Page 3 of 4
ChemComm
Please do not adjust margins
Journal Name
COMMUNICATION
Table 1. Results of the 1-catalyzed allylic amination reaction.
1.
2.
3.
Wang, Aldrichim. Acta, 2005, 38, 71.
DOI: 10.1039/C9CC08756G
E. Negishi, G. W. Wang, H. H. Rao and Z. Q. Xu, J. Org.
Chem., 2010, 75, 3151.
D. Haas, J. M. Hammann, R. Greiner and P. Knochel,
ACS Catal., 2016, 6, 1540.
4.
5.
N. Miyaura and A. Suzuki, Chem. Commun., 1979, 866.
N. Miyaura, K. Yamada and A. Suzuki, Tetrahedron
Lett., 1979, 20, 3437.
6.
7.
N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457.
T. Mizoroki, K. Mori and A. Ozaki, Bull. Chem. Soc. Jpn.,
1971, 44, 581.
R. F. Heck and J. P. Nolley, J. Org. Chem., 1972, 37,
2320.
I. P. Beletskaya and A. V. Cheprakov, Chem. Rev., 2000,
100, 3009.
A. B. Dounay and L. E. Overman, Chem. Rev., 2003,
103, 2945.
F. Schwizer, Y. Okamoto, T. Heinisch, Y. F. Gu, M. M.
Pellizzoni, V. Lebrun, R. Reuter, V. Kohler, J. C. Lewis
and T. R. Ward, Chem. Rev., 2018, 118, 142.
S. Abe, J. Niemeyer, M. Abe, Y. Takezawa, T. Ueno, T.
Hikage, G. Erker and Y. Watanabe, J. Am. Chem. Soc.,
2008, 130, 10512.
M. Filice, O. Romero, A. Aires, J. M. Guisan, A. Rumbero
and J. M. Palomo, Adv. Synth. Catal., 2015, 357, 2687.
J. Pierron, C. Malan, M. Creus, J. Gradinaru, I. Hafner,
A. Ivanova, A. Sardo and T. R. Ward, Angew. Chem. Int.
Ed., 2008, 47, 701.
A. Chatterjee, H. Mallin, J. Klehr, J. Vallapurackal, A. D.
Finke, L. Vera, M. Marsh and T. R. Ward, Chem. Sci.,
2016, 7, 673.
B. L. Iverson and R. A. Lerner, Science, 1989, 243, 1184.
A. Harada, K. Okamoto, M. Kamachi, T. Honda and T.
Miwatani, Chem. Lett., 1990, 19, 917.
Yield of 8
ee
(%)b
< 2
98 ± 2
< 2
Entry Catalyst
Conc. of Pd (μM)/mAb (μM)
(%)a
38
6
8.
1
2
3
1
1/0
1/0.1c
1/0.1
1+mAb
1+BSA
9.
11
a
Calculated from the peak area ratio of HPLC spectra using allylbenzene as an
10.
11.
internal standard. b Calculated from the peak area ratio of (R)- and (S)-enantiomers
of 8 of HPLC spectra. C Since the mAb is IgM with 10 binding sites, concentrations
of 1 and the binding site of mAb are equivalent.
increasing of the concentration of 1 and mAb. These results
suggest that the aggregation of IgM causes 1 to be adsorbed at
locations other than where the product structure is controlled.
The optimum reaction concentration of 1 and mAb was found
to be 1 and 0.1 μM, respectively. The yield of 8 in the presence
of the mAb (6%) was lower than that in the absence of the mAbs
(38%) (Table 1, Entries 1 and 2). Owing to the complex
formation between 1 and mAb, it is difficult for the substrates
such as 6 and 7 to access 1. The decline in the yield of 8 was
also observed in the presence of BSA (11%) (Table 1, Entry 3),
suggesting that the presence of protein reduces the catalytic
activity of 1. In the case of the absence of mAb, 1 gave racemic
12.
13.
14.
15.
16.
8 (ee: <2%) (Table 1, Entry 1 and Fig. S12a). In contrast, 17.
interestingly, the reaction catalysed by 1 incorporated into the
18.
19.
A. G. Cochran and P. G. Schultz, Science, 1990, 249,
781.
V. A. Roberts, B. L. Iverson, S. A. Iverson, S. J. Benkovic,
R. A. Lerner, E. D. Getzoff and J. A. Tainer, PNAS, 1990,
87, 6654.
R. A. Lerner, S. J. Benkovic and P. G. Schultz, Science,
1991, 252, 659.
P. Ghosh, D. Shabat, S. Kumar, S. C. Sinha, F.
Grynszpan, J. Li, L. Noodleman and E. Keinan, Nature,
1996, 382, 339.
D. A. Blake, P. Chakrabarti, M. Khosraviani, F. M.
Hatcher, C. M. Westhoff, P. Goebel, D. E. Wylie and R.
C. Blake, J. Biol. Chem., 1996, 271, 27677.
A. Harada, H. Fukushima, K. Shiotsuki, H. Yamaguchi, F.
Oka and M. Kamachi, Inorg. Chem., 1997, 36, 6099.
M. Khosraviani and R. C. Blake, Bioconjugate Chem.,
2000, 11, 267.
K. M. Nicholas, P. Wentworth, C. W. Harwig, A. D.
Wentworth, A. Shafton and K. D. Janda, PNAS, 2002,
99, 2648.
R. Ricoux, H. Sauriat-Dorizon, E. Girgenti, D. Blanchard
and J. P. Mahy, J. Immunol. Methods, 2002, 269, 39.
H. Yamaguchi, K. Tsubouchi, K. Kawaguchi, E. Horita
and A. Harada, Chem. Eur. J., 2004, 10, 6179.
R. C. Blake, A. R. Pavlov, M. Khosraviani, H. E. Ensley,
G. E. Kiefer, H. Yu, X. Li and D. A. Blake, Bioconjugate
Chem., 2004, 15, 1125.
binding site of mAb was found to proceed with excellent (R)-
enantioselectivity with a 98 ± 2% ee (Table 1, Entry 2 and and
Fig. S12b). These result indicate that no catalytic reaction
occurred outside the binding sites. Since the catalytic activity of
free 1 is reduced by the presence of protein, the catalytic
activity of free 1 would be negligible in the mAb system. This
asymmetric allylic amination was not observed in the presence
of BSA (ee < 2%) (Table 1, Entry 3 and and Fig. S12c). These
results indicate that the binding site of mAb functions as a
reaction field for the asymmetric reaction.
In summary, we have demonstrated that Pd-complex
catalysed allyl amination in the presence of mAb is a useful
synthetic strategy to control the resultant product asymmetry.
The substrate is converted to a racemic product by Pd-catalyst
without mAb. In contrast, the (R)-enantiomer (98 ± 2% ee) is
obtained in the presence of the complex between mAb and Pd-
catalyst.
20.
21.
22.
23.
24.
25.
This work was supported by JSPS KAKENHI Grant Numbers
JP15H05807 in Precisely Designed Catalysts with Customized
Scaffolding.
26.
27.
28.
There are no conflicts to declare.
Notes and references
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins