Full Paper
1
100 mL), m.p. 222–224 °C. H NMR (500 MHz, [D6]DMSO): δ = 4.76
(d, J = 5.8 Hz, 4 H, CH2), 5.60 (t, J = 5.8 Hz, 2 H, OH), 7.52–7.61 (m,
6 H, 6 Ph), 7.85 (d, J = 1.4 Hz, 2 H, 5-H), 7.91–7.93 (m, 4 H, Ph), 8.12
(t, J = 7.8 Hz, 1 H, 4′-H), 8.47 (d, J = 7.8 Hz, 2 H, 3′-H), 8.79 (d, J =
1.4 Hz, 2 H, 3-H) ppm. 13C NMR (126 MHz, [D6]DMSO): δ = 64.4 (t,
CH2), 116.4 (d, C-3), 118.0 (d, C-5), 120.9 (d, C-3′), 126.8, 129.3, 129.4
(3 d, Ph), 137.8 (d, C-4′), 138.4 (s, Ph), 148.7, 154.8, 155.0, 162.6 (4 s,
subsequent transformations, as shown by oxidation of com-
pound 21 followed by reductive amination of 23 to furnish the
new tetradentate amino-substituted terpyridine derivative 25
in good overall yield.
Experimental Section
C-2, C-2′, C-4, C-6) ppm. IR (ATR): ν = 3240 (O–H), 3060 (=C–H), 2930,
˜
2870 (C–H), 1605, 1580, 1545, 1500 (C=C, C=N), 1465–1430, 1390,
1320, 1275 cm–1. HRMS (ESI-TOF): C29H23N3O2·Na+: calcd. 468.1682;
found 468.1684.
Typical Procedure for the Synthesis of 6,6′′-Bis(acetoxymethyl)-
4,4′′-dimethoxy-2,2′:6′,2′′-terpyridine (7) and 6-Acetoxymethyl-
4,4′′-dimethoxy-6′′-methyl-2,2′:6′,2′′-terpyridine (8): A mixture
of terpyridine 1 (216 mg, 0.57 mmol) and mCPBA (994 mg,
4.03 mmol, 70 %) in CH2Cl2 (12 mL) was stirred at room temperature
for 3 d. TLC analysis indicated incomplete conversion of 1. An addi-
tional amount of mCPBA (663 mg, 2.69 mmol, 70 %) and CH2Cl2
(5 mL) were added and stirring was continued at 45 °C under reflux
for 2 d. The mixture was diluted with CH2Cl2 (20 mL) and a solution
of satd. aq. Na2CO3 (30 mL). The layers were separated, and the
aqueous layer was extracted with CH2Cl2 (30 mL). The combined
organic layer was dried with Na2SO4, filtered, and concentrated un-
der reduced pressure. The remaining residue was dissolved in Ac2O
(5 mL) and stirred at 120 °C under reflux for 6 h. The solvent was
evaporated under reduced pressure, and the remaining residue was
slowly treated with a solution of satd. aq. Na2CO3 (15 mL) and ex-
tracted with CH2Cl2 (2 × 20 mL). The combined organic layer was
dried with Na2SO4, filtered, and concentrated under reduced pres-
sure. The obtained crude product was filtered through silica gel
(hexanes/EtOAc = 3:2) to provide a mixture of terpyridines 7 and 8
(159 mg). Flash column chromatography on aluminum oxide (activ-
ity grade III, hexanes/EtOAc = 6:1→4:1) provided terpyridine 8
(40 mg, 16 %) and 7 (117 mg, 40 %) as colorless solids. For elemen-
tal analysis, a sample of 7 was recrystallized from hexanes/EtOAc
(1:2). Data for 7: M.p. 105–108 °C. 1H NMR (500 MHz, CDCl3): δ =
2.19 (s, 6 H, CH3), 3.97 (s, 6 H, OMe), 5.27 (s, 4 H, CH2), 6.91 (d, J =
2.4 Hz, 2 H, 5-H), 7.91 (t, J = 7.8 Hz, 1 H, 4′-H), 8.05 (d, J = 2.4 Hz, 2
H, 3-H), 8.44 (d, J = 7.8 Hz, 2 H, 3′-H) ppm. 13C NMR (126 MHz,
CDCl3): δ = 21.0 (q, CH3), 55.3 (q, OMe), 66.9 (t, CH2), 105.8 (d, C-3),
107.7 (d, C-5), 121.6 (d, C-3′), 137.8 (d, C-4′), 154.8, 157.0, 157.6 (3 s,
Supporting Information (see footnote on the first page of this
article): Experimental details, characterization data, and copies of
the H NMR and 13C NMR spectra of all key intermediates and final
1
products.
Acknowledgments
Generous support of this work by the Deutsche Forschungs-
gemeinschaft (DFG) and Bayer HealthCare is most gratefully ac-
knowledged.
Keywords: Cross-coupling · Ligand design · Oxidation ·
Rearrangement · Nitrogen heterocycles · Terpyridines
[1] a) J. Dash, H.-U. Reissig, Chem. Eur. J. 2009, 15, 6811–6814; b) C.
Eidamshaus, H.-U. Reissig, Eur. J. Org. Chem. 2011, 6056–6069; c) C. Ei-
damshaus, T. Triemer, H.-U. Reissig, Synthesis 2011, 3261–3266; d) P.
Hommes, P. Jungk, H.-U. Reissig, Synlett 2011, 2311–2314; e) P. Hommes,
S. Berlin, H.-U. Reissig, Synthesis 2013, 45, 3288–3294; f) M. Domínguez,
H.-U. Reissig, Synthesis 2014, 46, 1100–1106; g) G. Podolan, L. Hettmanc-
zyk, P. Hommes, B. Sarkar, H.-U. Reissig, Eur. J. Org. Chem. 2015, DOI:
10.1002/ejoc.201501163.
[2] P. Hommes, C. Fischer, C. Lindner, H. Zipse, H.-U. Reissig, Angew. Chem.
Int. Ed. 2014, 53, 7647–7651; Angew. Chem. 2014, 126, 7778–7782.
[3] For a review on nonaflates in transition-metal-catalyzed reactions, see: J.
Högermeier, H.-U. Reissig, Adv. Synth. Catal. 2009, 351, 2747–2763.
[4] P. Hommes, Ph. D. Dissertation, Freie Universität Berlin, Berlin, 2013.
[5] F. Guo, B. H. Chang, C. J. Rizzo, Bioorg. Med. Chem. Lett. 2002, 12, 151–
154.
[6] For radical bromination reactions on structurally related terpyridines,
see: a) S. Bedel, G. Ulrich, C. Picard, P. Tisnès, Tetrahedron Lett. 2001, 42,
6113–6115; b) S. Bedel, G. Ulrich, C. Picard, P. Tisnès, Synthesis 2002,
1564–1570; c) M. Heller, U. S. Schubert, J. Org. Chem. 2002, 67, 8269–
8272.
[7] a) V. Boekelheide, W. J. Linn, J. Am. Chem. Soc. 1954, 76, 1286–1291; b)
P. Galatsis, Name Reactions in Heterocyclic Chemistry (Eds.: J.-J. Li, E. J.
Corey), Wiley, Hoboken, NJ, 2005, p. 340–349.
C-2, C-2′, C-6), 167.3 (s, C-4), 170.7 (s, C=O) ppm. IR (ATR): ν = 3100,
˜
3020 (=C–H), 2970, 2940, 2855 (C–H), 1735 (C=O), 1605, 1565 (C=C,
C=N), 1455, 1420, 1375, 1255–1160 cm–1
. HRMS (ESI-TOF):
C23H23N3O6·H+: calcd. 438.1660; found 438.1685. C23H23N3O6
(437.4): C 63.15, H 5.30, N 9.61; found C 63.20, H 5.24, N 9.56. Data
1
for 8: M.p. 120–122 °C. H NMR (500 MHz, CDCl3): δ = 2.20 (s, 3 H,
OCOCH3), 2.60 (s, 3 H, 6′′-CH3), 3.94, 3.98 (2 s, 3 H each, OMe), 5.27
(s, 2 H, CH2), 6.72 (d, J = 2.4 Hz, 1 H, 5′′-H), 6.91 (d, J = 2.4 Hz, 1 H,
5-H), 7.91 (t, J = 7.8 Hz, 1 H, 4′-H), 7.94 (d, J = 2.4 Hz, 1 H, 3′′-H),
8.07 (d, J = 2.4 Hz, 1 H, 3-H), 8.43, 8.44 (2 dd, J = 7.8 Hz, JAB
=
[8] a) R. Zimmer, T. Lechel, G. Rancan, M. K. Bera, H.-U. Reissig, Synlett 2010,
1793–1796; b) M. K. Bera, M. Domínguez, P. Hommes, H.-U. Reissig, Beil-
stein J. Org. Chem. 2014, 10, 394–404.
1.0 Hz, 1 H each, 3′-H, 5′-H) ppm. 13C NMR (126 MHz, CDCl3): δ =
21.0 (q, COCH3), 24.8 (q, 6′′-CH3), 55.1, 55.3 (2 q, OMe), 66.9 (t, CH2),
104.5 (d, C-3′′), 105.7 (d, C-3), 107.8 (d, C-5), 108.9 (d, C-5′′), 121.3,
121.5 (2 d, C-3′, C-5′), 137.7 (d, C-4), 154.8, 155.3, 156.9, 157.3, 157.7,
159.5 (6 s, C-2, C-2′, C-2′′, C-6, C-6′, C-6′′), 166.9, 167.3 (2 s, C-4, C-
[9] R. P. Thummel, Y. Jahng, J. Org. Chem. 1985, 50, 3635–3636.
[10] a) C. Copéret, H. Adolfsson, T.-A. V. Khuong, A. K. Yudin, K. B. Sharpless,
J. Org. Chem. 1998, 63, 1740–1741; b) L.-C. Campeau, D. R. Stuart, J.-P.
Leclerc, M. Bertrand-Laperle, E. Villemure, H.-Y. Sun, S. Lasserre, N. Gui-
mond, M. Lecavallier, K. Fagnou, J. Am. Chem. Soc. 2009, 131, 3291–3306.
[11] E. C. Constable, G. Baum, E. Bill, R. Dyson, R. van Eldik, D. Fenske, S.
Kaderli, D. Morris, A. Neubrand, M. Neuburger, D. R. Smith, K. Wieghardt,
M. Zehnder, A. D. Zuberbühler, Chem. Eur. J. 1999, 5, 498–508.
[12] a) M. S. Cooper, H. Heaney, A. J. Newbold, W. R. Sanderson, Synlett 1990,
533–535; b) S. Caron, N. M. Do, J. E. Sieser, Tetrahedron Lett. 2000, 41,
2299–2302; c) X.-F. Duan, Z.-Q. Ma, F. Zhang, Z.-B. Zhang, J. Org. Chem.
2008, 74, 939–942.
4′′), 170.7 (s, C=O) ppm. IR (ATR): ν = 3105, 3015 (=C–H), 2960–2920,
˜
2850 (C–H), 1735 (C=O), 1605, 1570 (C=C, C=N), 1470–1380, 1250–
1170 cm–1. HRMS (ESI-TOF): C21H21N3O4·H+: calcd. 380.1605; found
380.1618. C21H21N3O4 (379.4): C 66.48, H 5.58, N 11.08; found C
66.53, H 5.45, N 10.98.
6,6′′-Bis(hydroxymethyl)-4,4′′-diphenyl-2,2′:6′,2′′-terpyridine
(20): Terpyridine 18 (510 mg, 0.96 mmol) was treated overnight
with K2CO3 (1.33 g, 9.64 mmol) in a mixture of CH2Cl2/MeOH (1:1,
18 mL) to provide terpyridine 20 (396 mg, 92 %) as a yellow solid.
Workup was performed with water (100 mL) and CH2Cl2 (6 ×
[13] W. E. Emmons, A. S. Pagano, J. Am. Chem. Soc. 1955, 77, 89–92.
[14] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483; b) A. Suzuki,
J. Organomet. Chem. 1999, 576, 147–168.
Eur. J. Org. Chem. 2016, 338–342
341
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim