10.1002/ejoc.201800425
European Journal of Organic Chemistry
COMMUNICATION
Kajtár-Peredy, P. Fügedi, Carbohydr. Res. 2008, 343, 596–606; d) M.
Herczeg, L. Lázár, A. Mándi, A. Borbás, I. Komáromi, A. Lipták, S.
Antus, Carbohydr. Res. 2011, 346, 1827–1836; e) H. Takahashi, Y.
Hitomi, Y. Iwai, S. Ikegami, J. Am. Chem. Soc. 2000, 122, 2995–3000.
Selected ref.: a) T. Chiba, P. Sinaÿ, Carbohydr. Res. 1986, 151, 379–
389; b) W. Ke, D. M. Whitfield, M. Gill, S. Larocque, S.-H. Yu,
Tetrahedron Lett. 2003, 44, 7767–7770; c) S. Salamone, M. Boisbrun,
C. Didierjean, Y. Chapleur, Carbohydr. Res. 2014, 386, 99–105; d) X.
Cao, Q. Lv, D. Li, H. Ye, X. Yan, X. Yang, H. Gan, W. Zhao, L. Jin, P.
Wang, J. Shen, Asian J. Org. Chem. 2015, 4, 899–902.
key steps include C5 epimerization by hydroboration/oxidation of
the corresponding 5-enopyranosides followed by a 4,6-O-acetal
formation of the obtained 6-hydroxy or 4,6-dihydroxy L-idosides.
We demonstrated that the 4,6-arylmethylene group has a
directing effect on the stereochemistry of glycosylation reaction,
which can be exploited in the stereoselective formation of the α-
L-idosidic bond in the lack of a C2 participating group.
[5]
Importantly, idose or iduronic acid donors with
a C-2
participating group have found exclusive application in heparin
syntheses, hitherto. Our results pave the way to designing new,
more diverse protecting group strategies for the synthesis of
H/HS oligosaccharides. Moreover, the obtained thioidosides can
be oxidised into the corresponding L-iduronic acids in a chemo-
and regioselective manner using the TEMPO/BAIB[23] reagent
combination and this oxidative transformation can easily be
performed at an oligosaccharide level as well.[24]
[6]
[7]
Selected ref.: a) L. Rochepeau-Jobron, J.-C. Jacquinet, Carbohydr. Res.
1997, 303, 395–406; b) H. Takahashi, N. Miyama, H. Mitsuzuka, S.
Ikegami, Synthesis 2004, 18, 2991-2994; c) H. G. Bazin, M. W. Wolff, R.
J. Linhardt, J. Org. Chem. 1999, 64, 144–152.
Selected ref.: a) M. S. M. Timmer, A. Adibekian, P. H. Seeberger,
Angew. Chem. Int. Ed. 2005, 44, 7605–7607; b) A. Adibekian, P.
Bindschädler, M. S. M. Timmer, C. Noti, N. Schützenmeister, P. H.
Seeberger, Chem. Eur. J. 2007, 13, 4510–4522; c) S. U. Hansen, M.
Barath, B. A. B. Salameh, R. G. Pritchard, W. T. Stimpson, J. M.
Gardiner, G. C. Jayson, Org. Lett. 2009, 11, 4528–4531; d) A. Dondoni,
A. Marra, A. Massi, J. Org. Chem. 1997, 62, 6261–6267; e) A.
Lubineau, O. Gavard, J. Alais, D. Bonnaffé, Tetrahedron Lett. 2000, 41,
307–311.
The optimization of our epimerization and glycosylation
procedures and their application in the synthesis of heparin
oligosaccharides are in progress.
[8]
[9]
a) T. G. Frihed, C. M. Pedersen, M. Bols, Angew. Chem. Int. Ed. 2014,
53, 13889–13893; b) T. G: Frihed, C. M. Pedersen, M. Bols, Eur. J. Org.
Chem. 2014, 7924–7939.
Acknowledgements
M. Herczeg, L. Lázár, M. Ohlin, A. Borbás, Carbohydrate Chemistry:
Proven Synthetic Methods, G. van der Marel, J. Codée, Eds.; CRC
Press, 2014, Vol. 2, pp 9-20.
The authors gratefully acknowledge financial support for this
research from the Mizutani Foundation for Glycoscience
(150091), from the National Research, Development and
Innovation Office of Hungary (PD 115645) and from the János
Bolyai Research Scholarship of the Hungarian Academy of
Sciences (M. Herczeg). The research was also supported by the
EU and co-financed by the European Regional Development
Fund under the project GINOP-2.3.2-15-2016-00008.
[10] G. Łopatkiewicz, J. Mlynarski, J. Org. Chem. 2016, 81, 7545–7556.
[11] M. Trumtel, P. Tavecchia, A. Veyrieres, P. Sinay, Carbohydr. Res. 1990,
202, 257–275.
[12] L. Lázár, M. Csávás, M. Herczeg, P. Herczegh, A. Borbás, Org. Lett.
2012, 14, 4650−4653.
[13] R. Eby, S. J. Sondheimer, C. Schuerch, Carbohydr. Res. 1979, 73,
273–276.
[14] D. Kahne, D. Walker, Y. Chen, D. V. Engen, J. Am. Chem. Soc. 1989,
111, 6881–6882.
Keywords: thioglycosides • L-idose • glycosylation •
stereoselective • heparin
[15] M. Herczeg, E. Mező, D. Eszenyi, L. Lázár, M. Csávás, I. Bereczki, S.
Antus, A. Borbás, Eur. J. Org. Chem. 2013, 25, 5570–5573.
[16] E. Mező, M. Herczeg, D. Eszenyi, A. Borbás, Carbohydr. Res. 2014,
388, 19–29.
[1]
[2]
a) B. Casu, U. Lindahl, Adv. Carbohydr. Chem. Biochem. 2001, 57,
159–206; b) N. S. Gandhi, R. L. Mancera, Chem. Biol. Drug Des. 2008,
72, 455–482.
[17] a) M. Ek, P. J. Garegg, H. Hultberg, S. Oscarson, J. Carbohydr. Chem.
1983, 2, 305–311; b) A. Borbás, Z. B. Szabó, L. Jánossy. L. Szilágyi, A.
Bényei, A. Lipták, Tetrahedron, 2002, 58, 5723–5732.
[18] S. S. Rana, J. J. Barlow, K. L. Matta, Carbohydr. Res. 1983, 113, 257-
271.
Selected ref.: a) M. Herczeg, L. Lázár, Z. Bereczky, K. E. Kövér, I.
Timári, J. Kappelmayer, A. Lipták, S. Antus, A. Borbás, A. Chem. Eur. J.
2012, 18, 10643 –10652; b) S. U. Hansen, G. J. Miller, G. C. Jayson, J.
M. Gardiner, Org Lett. 2013, 15, 88–91. c) C.-H. Chang, L. S. Lico, T.-Y.
Huang, S.-Y. Lin, C.-L. Chang, S. D. Arco, S.-C. Hung, Angew. Chem.
Int. Ed. 2014, 53, 9876–9879; d) P. C. Tyler, S. E. Guimond, J. E.
Turnbull, O. V. Zubkova, Angew. Chem. Int. Ed. 2015, 54, 2718–2723;
e) M. Baráth, S. U. Hansen, C. E. Dalton, G. C. Jayson, G. J. Miller, J.
M. Gardiner, Molecules, 2015; 20, 6167–6180; f) E. Mező, D. Eszenyi,
E. Varga, M. Herczeg, A. Borbás, Molecules 2016, 21, 1497; g) N. V.
Sankaranarayanan, R. Tamara, T. R. Strebel, R. S. Boothello, K.
Sheerin, A. Raghuraman, F. Sallas, P. D. Mosier, N. D. Watermeyer, S.
Oscarson, U. R. Desai, Angew. Chem. Int. Ed. 2017, 56, 2312–2317; h)
C. Zong, A. Venot, X. Li, W. Lu, W. Xiao, J.-S. L. Wilkes, C. L. Salanga,
T. M. Handel, L. Wang, M. A. Wolfert, G. J. Boons, J. Am. Chem. Soc.
2017, 139, 9534-9543; i) G. Łopatkiewicz, S. Buda, J. Mlynarski, J. Org.
Chem. 2017, 82, 12701–12714.
[19] a) D. Crich, V. Dudkin, J. Am. Chem. Soc. 2001, 123, 6819-6825; b) L.
Liao, F.-I. Auzanneau, Org. Lett. 2003, 5, 2607-2610.
[20] a) Y. Oikawa, T. Yoshioka, O. Yonemitsu, Tetrahedron Lett. 1982, 23,
889-892; b) H. Kim, H. M. R. Hoffmann, Eur. J. Org. Chem. 2000, 2195-
2201.
[21] a) D. Crich, S. Sun, J. Org. Chem. 1996, 61, 4506–4507; b) D. Crich, S.
Sun, J. Org. Chem. 1997, 62, 1198–1199.
[22] a) D. Crich, W. Cai, J. Org. Chem. 1999, 64, 4926–4930; b) H. N. Yu, J
Furukawa, T. Ikeda, C.-H. Wong, Org. Lett. 2004, 6, 723-726; c) A.
Vibert, C. Lopin-Bon, J.-C. Jacquinet, Chem. Eur. J. 2009, 15, 9561-
9578; d) M. Moumé-Pymbock, T. Furukawa, S. Mondal, D. Crich, J. Am.
Chem. Soc. 2013, 135, 14249–14255.
[23] L. J. van den Bos, J. D. C. Codée, J. C. van der Toorn, T. J. Boltje, J. H.
van Boom, H. S. Overkleeft, G. A. van der Marel, Org. Lett. 2004, 6,
2165–2168.
[3]
[4]
a) F. Vito, Adv. Carbohydr. Chem. Biochem. 2015; 57,159–206; b) T. G.
Frihed, M. Bols, C. M. Pedersen, Chem. Rev. 2015, 115, 3615-3676.
Selected ref.: a) J. C. Jacquinet, M. Petitou, P. Duchaussoy, I.
Lederman, J. Choay, G. Torri, P. Sinaÿ, Carbohydr. Res. 1984, 130,
221–241; b) J.-C. Lee, X.-A. Lu, S. S. Kulkarni, Y.-S. Wen, S.-C. Hung,
J. Am. Chem. Soc. 2004, 126, 476–477; c) J. Tatai, G. Osztrovszky, M.
[24] a) J. D. C. Codée, A. E. Christina, M. T. C. Walvoort, H. S. Overkleeft,
G. A. van der Marel, Top. Curr. Chem. 2011, 301, 253–289; b) M.
Herczeg, E. Mező, D. Eszenyi, S. Antus, A. Borbás, Tetrahedron 2014,
70, 2919-2927.
This article is protected by copyright. All rights reserved.