X.-M. Ren et al. / Polyhedron 28 (2009) 2075–2079
2079
[CuxNi1ꢀx(mnt)2] (x = 0.04–0.74), and investigated the nonmagnetic
impurities effects on the spin-Peierls-like transition in a quasi-1D
spin system of [NO2BzPy][Ni(mnt)2]. The nonmagnetic impurities
suppress the spin-Peierls-like transition, and the transition temper-
ature TC reduces at an average rate of 139(13) K/percentage of non-
magnetic dopant. The transitioncollapse is estimated around x > 0.5.
Compared with the [NO2BzPy][AuxNi1ꢀx(mnt)2] system, the
[NO2BzPy][CuxNi1ꢀx(mnt)2] system shows higher x values of the
transition collapsing and smaller x dependence of TC shift, and these
differences may be originate from the molecular structure distinc-
tion between [Cu(mnt)2]ꢀ and [Au(mnt)2]ꢀ anions, for example,
the average Au–S length is around 0.15 Å longer than the average
Ni–S length whereas the average Cu–S length is similar to the Ni–S
distance.
Supplementary data
CCDC 705212–705217 contain the supplementary crystallo-
graphic data for each compound of [NO2BzPy][CuxNi1ꢀx(mnt)2]
(x = 0.04–1). These data can be obtained free of charge via http://
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Acknowledgments
X.M. Ren thanks the Natural Science Foundation for Outstand-
ing Scholars of Anhui Province, PR China (Grant Nos. 044-J-04011
and 2005hbz20).
References
[1] M. Hase, I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. Lett. 71 (1993) 4059.
[2] S.B. Oseroff, S.W. Cheong, B. Aktas, M.F. Hundley, Z. Fisk, L.W. Rupp Jr., Phys.
Rev. Lett. 74 (1995) 1450.
[3] T. Masuda, A. Fujioka, Y. Uchiyama, I. Tsukada, K. Uchinokura, Phys. Rev. Lett.
80 (1998) 4566.
[4] A. Osawa, T. Ono, H. Tanaka, Phys. Rev. B 66 (2002) 020405.
[5] M. Isobe, Y. Ueda, J. Mag. Mag. Mater. 177–181 (1998) 671.
[6] M. Lohmann, H.-A. Krug von Nidda, A. Loidl, E. Morré, M. Dischner, C. Geibel,
Phys. Rev. B 61 (2000) 9523.
Fig. 5. (a) Plots of d(vmT)/dT versus T for [NO2BzPy][CuxNi1ꢀx(mnt)2] (x = 0–0.5) and
(b) the x dependences of TC.
noteworthy that the transition is still observed with the vm value
[7] T. Otsuka, M. Yoshimaru, K. Awaga, H. Imai, T. Inabe, N. Wada, M. Ogata, J. Phys.
Soc. Jpn. 70 (2001) 2711.
clear dropping in the
v
m–T plot even if the change is small. In
the heavily doped system of x = 0.74, the shape of
v
m(T)–T plot is
[8] V.N. Glazkov, A.I. Smirnov, H.-A. Krug von Nidda, A. Loidl, K. Uchinokura, T.
Masuda, Phys. Rev. Lett. 94 (2005) 057205.
[9] M. Mito, S. Tanaka, T. Kawae, K. Takeda, M. Yanagimoto, K. Mukai, Physica B
329–333 (2003) 1150.
[10] K. Mukai, K. Suzuki, K. Ohara, J.B. Jamali, N. Achiwa, J. Phys. Soc. Jpn. 68 (1999)
3078.
[11] K. Mukai, Y. Shimobe, J.B. Jamali, N. Achiwa, J. Phys. Chem. B 103 (1999) 10876.
[12] X. Ribas, A. Sironi, N. Masciocchi, E.B. Lopes, M. Almeida, J. Veciana, C. Rovira,
Inorg. Chem. 44 (2005) 2358.
[13] J.W. Bray Jr., H.R. Hart, L.V. Interrante, I.S. Jacobs, J.S. Kasper, G.D. Watkins, S.H.
Wee, J.C. Bonner, Phys. Rev. Lett. 35 (1975) 744.
[14] I.S. Jacobs, J.W. Bray Jr., H.R. Hart, L.V. Interrante, J.S. Kasper, G.D. Watkins, D.E.
Prober, J.C. Bonner, Phys. Rev. B 14 (1976) 3036.
totally different from other doped systems, in which the typical
characteristic of a lowered dimensionality of spin system (with a
broad maximum of magnetic susceptibility) and the magnetic
transition disappear, and the temperature dependences of mag-
netic susceptibility exhibits
Fig. 5a depicts the derivative curves of
a
simple Curie–Weiss behavior.
mT versus for
v
T
[NO2BzPy][CuxNi1ꢀx(mnt)2] (x = 0–0.5) and Fig. 5b plots the
corresponding x dependences of TC, which is defined as the peak
temperature in the d(vmT)/dT–T plot. The values of TC(x) reduce lin-
[15] S. Huizinga, J. Kommandeur, G.A. Sawatzky, B.T. Thole, K. Kopinga, W.J.M. de
Jonge, J. Roos, Phys. Rev. B 19 (1979) 4723.
[16] X.M. Ren, Q.J. Meng, Y. Song, C.J. Hu, C.S. Lu, X.Y. Chen, Inorg. Chem. 41 (2002)
5686.
[17] X.M. Ren, T. Akutagawa, S. Noro, S. Nishihara, T. Nakamura, Y. Yoshida, K.
Inoue, J. Phys. Chem. B 110 (2006) 7671.
[18] X.M. Ren, Y.X. Sui, G.X. Liu, J.L. Xie, J. Phys. Chem. A112 (2008) 8009.
[19] X.M. Ren, J. Ma, C.S. Lu, S.Z. Yang, Q.J. Meng, P.H. Wu, Dalton Trans. (2003)
1345.
[20] G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structure,
University of Göttingen, Germany, 1997.
[21] D.C. Johnston, R.K. Kremer, M. Troyer, X. Wang, A. Klümper, S.L. Bud’ko, A.F.
Panchula, P.C. Canfield, Phys. Rev. B 61 (2000) 9558.
early up to x 6 0.5, and it is expressed as TC = 182(3)–139(13)x (K).
Compared with the [NO2BzPy][AuxNi1ꢀx(mnt)2] system, where
TC = 180(2)–221(12)x (K), the [NO2BzPy][CuxNi1ꢀx(mnt)2] system
exhibits higher x value of the transition collapsing and smaller x
dependence of TC shift.
4. Conclusion
Summarily, we synthesized and characterized structurally
five nonmagnetic doped compounds with a formula [NO2BzPy]