ORGANIC
LETTERS
2011
Vol. 13, No. 10
2658–2661
Free-Radical Carboalkynylation
and Carboalkenylation of Olefins
ꢀ ꢀ
Virginie Liautard, Frederic Robert, and Yannick Landais*
ꢀ
University of Bordeaux, Institut des Sciences Moleculaires, 351, cours de la liberation,
ꢀ
33405 Talence Cedex, France
Received March 22, 2011
ABSTRACT
Free-radical three-component carboalkynylation and -alkenylation of olefins have been developed. These involve the addition, across the double
bond of an unactivated olefin, of a radical species R- to an electron-withdrawing group and an alkenyl or alkynyl moiety, derived from the
corresponding sulfones.
Intermolecular addition of two functionalized carbon
fragments across an electron-rich olefinic π-system re-
mains a challenging transformation and still the subject of
intense scrutiny. Several transition metal complexes are able
to mediate such a process, in a single pot, but the versatility
of the method is somewhat restricted by the limited func-
tional group tolerance on both the olefin and the added
fragments.1 Radical chemistry is potentially able to mediate
such a transformation with more flexibility. Several exam-
ples of one-pot functionalization of conjugated olefins
under mild radical conditions have thus been reported.2 In
contrast, little has been done on the analogous transforma-
tion involving electron-rich olefins.3 Pioneering studies by
Fuchs et al.4 have shown that carboalkynylation using
trifluoromethylsulfonylalkyne derivatives is effective, allow-
ing the addition of CF3 and alkyne moieties across the π-
system. However, this method is limited to the introduction
of a CF3 group as the initial electrophilic component.
Multicomponent reactions may offer an attractive solution,
extending the nature of the fragments that may be added
onto the olefinic backbone. Multicomponent processes5 rely
on the matched polarity between the different partners.6 The
free-radical addition onto an electron-rich olefin thus im-
plies that an electrophilic radical component is added first
on the olefin, affording a nucleophilic radical intermediate
that should in turn be trapped by an electrophilic partner.
These three-component reactions were recently defined as
ADA-processes involving the intermolecular assembly be-
tween an acceptor (A), a donor (D), i.e. an olefin, and an
€
(1) Carbopalladation: (a) Brase, S.; De Meijere, A. Palladium-cata-
lyzed cascade carbo-palladation: Termination by nucleophilic reagents in
Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi,
E.-I., Ed.; John Wiley & Sons, Inc: 2002; pp 1405ꢀ1429. (b) Oda, H.;
Hamataka, K.; Fugami, K.; Kosugi, M.; Migita, T. Synlett 1995, 1225.
Pt-catalyzed diboration: (c) Kilman, L. T.; Mlynarski, S. N.; Morken,
J. P. J. Am. Chem. Soc. 2009, 131, 13210. Zr-catalyzed carboalumina-
tion: (d) Zhu, G.; Liang, B.; Negishi, E.-I. Org. Lett. 2008, 10, 1099 and
references cited therein.
(2) (a) Quiclet-Sire, B.; Zard, S. Z. Angew. Chem., Int. Ed. 1996, 118,
1209. (b) Miura, K.; Fujisawa, N.; Saito, H.; Wang, D.; Hosomi, A. Org.
Lett. 2001, 3, 2591. (c) Porter, N. A.; Giese, B.; Curran, D. P. Acc. Chem.
Res. 1991, 24, 296. (d) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32,
163. (e) Schaffner, A. P.; Sarkunam, K.; Renaud, P. Helv. Chim. Acta
2006, 89, 2450.
(4) (a) Gong, J.; Fuchs, P. L. J. Am. Chem. Soc. 1996, 118, 4486.
(b) Xiang, J.; Fuchs, P. L. J. Am. Chem. Soc. 1996, 118, 11986. (c) Xiang,
J.; Jiang, W.; Gong, J.; Fuchs, P. L. J. Am. Chem. Soc. 1997, 119, 4123.
(d) Xiang, J.; Fuchs, P. L. Tetrahedron Lett. 1996, 37, 5269. (e) Xiang, J.;
Jiang, W.; Fuchs, P. L. Tetrahedron Lett. 1997, 38, 6635. (f) Xiang, J.;
Fuchs, P. L. Tetrahedron Lett. 1998, 39, 8597.
(5) (a) Ryu, I. Multicomponent radical reactions. In Multicomponent
ꢀ
Radical Reactions; Zhu, J., Bienayme, H., Eds.; Wiley-VCH: Weinheim,
2005. (b) Ryu, I.; Sonoda, N.; Curran, D. P. Chem. Rev. 1996, 96, 177.
(6) (a) DeVleeschouwer, F.; VanSpeybroeck, V.; Waroquier, M.;
Geerlings, P.; DeProft, F. Org. Lett. 2007, 9, 2721. (b) Arthur, N. L.;
Potzinger, P. Organometallics 2002, 21, 2874. (c) Giese, B. Radical
Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon Press:
Oxford, 1986; Chapter 2, pp 4ꢀ35.
(3) (a) Ryu, I.; Sonoda, N. Angew. Chem. 1996, 35, 1050. (b) Ryu, I.;
Muraoka, H.; Kambe, N.; Komatsu, M.; Sonoda, N. J. Org. Chem.
1996, 61, 6396. (c) Kim, S.; Lee, I. Y.; Yoon, J. Y.; Oh, D. H. J. Am.
Chem. Soc. 1996, 118, 5138. (d) Godineau, E.; Landais, Y. J. Am. Chem.
Soc. 2007, 129, 12662.
(7) Godineau, E.; Landais, Y. Chem.;Eur. J. 2009, 15, 3044.
r
10.1021/ol2007633
Published on Web 04/19/2011
2011 American Chemical Society