654
C.L. Liu et al. / Chinese Chemical Letters 22 (2011) 651–654
Table 5
Direct aldol reactions of aldehydes with ketones catalyzed by naphthol (4a)/sodium naphtholate (4b)a
Entry
I
II
Time (h)
III (%)
IV (%)
Total yield (%)b
1
2
Acetone
Acetone
Acetone
Acetone
Acetone
4-Nitrobenzaldehyde
2-Nitrobenzaldehyde
3-Nitrobenzaldehyde
Benzaldehyde
2
90
6
96
97
91
76
93
98
93
90
92
92
2
87
10
3
2
91
4
2
76
5
2,4-Dichlorobenzaldehyde
4-Nitrobenzaldehyde
4-Nitrobenzaldehyde
4-Nitrobenzaldehyde
3-Nitrobenzaldehyde
2-Nitrobenzaldehyde
2
93
6
Cyclohexanone
2-Butanone
1.5
1.5
1
98c
34/59d
90
7
8
Acetophenone
Acetophenone
Acetophenone
9
1
92
10
1
92
a
The reactions were carried out at room temperature with 0.05eq catalysts.
Isolated yield.
b
c
d
Yield represents the combined yield of diastereomers, and the anti:syn = 1:1.
Methylene/methyl. Reaction at the methyl, and the anti:syn = 48:52.
3. Conclusions
In summary, the combination of naphthol/sodium naphtholate as a simple and readily available bifunctional
catalyst has been developed to facilitate the direct aldol reaction. Through this catalyst, the direct aldol reaction can be
performed at room temperature with yield up to 98% and trace level of side products. In addition, no prior modification
of the carbonyl substrates such as deprotonation or silylation is required.
Acknowledgments
This work is supported by the Natural Science Foundation of China (Nos. 20872120 and 20572087), the Municipal
Science Foundation of Chongqing City (No. 2003-8118), the Ministry of Education, PR of China (No. 106141) and the
Fundamental Research Funds for the Central Universities.
References
[1] (a) B.M. Trost, L. Fleming, C.H. Heathcock, Comprehensive Organic Synthesis, vol. 2, Pergamon, Oxford, 1991;
(b) P.I. Dalko, L. Moisan, Angew. Chem. Int. Ed. 43 (2004) 5138, Angew. Chem. Int. Ed. 40 (2001) 3726;
(c) N. Mase, F. Tanaka, C.F. Barbas, III Org. Lett. 5 (2003) 4369;
(d) Y. Hayashi, Angew. Chem. Int. Ed. 45 (2006) 5527;
(e) D.W.C. Macmillan, A.B. Northrup, J. Am. Chem. Soc. 124 (2002) 6798.
[2] (a) T. Mukaiyama, Tetrahedron 55 (1999) 8609;
(b) K.C. Nicolaou, D. Vourloumis, N. Winssinger, Angew. Chem. Int. Ed. 39 (2000) 44;
(c) A.B. Northrup, D.W.C. MacMillan, Angew. Chem. Int. Ed. 43 (2004) 2152.
¨
[3] (a) H. Groger, J. Wilken, Angew. Chem. Int. Ed. 40 (2001) 529;
(b) B. List, Synlett (2001) 1675;
(c) B. Alcaide, P. Almendros, Eur. J. Org. Chem. (2002) 1595;
(d) B. Alcaide, P. Almendros, Angew. Chem. Int. Ed. 42 (2003) 858.
[4] (a) B. List, R.A. Lerner, C.F. Barbas, J. Am. Chem. Soc. 122 (2000) 2395;
(b) W. Notz, B. List, J. Am. Chem. Soc. 122 (2000) 7386;
(c) K. Sakthivel, W. Notz, T. Bui, et al. J. Am. Chem. Soc. 123 (2001) 5260;
(d) B. List, P. Pojarliev, C. Castello, Org. Lett. 3 (2001) 573;
(e) N. Mase, C.F. Barbas, J. Am. Chem. Soc. 128 (2006) 734.
[5] (a) S. Kanwar, S. Trehan, Tetrahedron Lett. 46 (2005) 1329;
(b) K. Oisaki, D.B. Zhao, et al. Tetrahedron Lett. 46 (2005) 4325.
¨
[6] (a) E.M. Vogl, H. Groger, M. Shibasaki, Angew. Chem. 111 (1999) 1672;
¨
(b) E.M. Vogl, H. Groger, M. Shibasaki, Angew. Chem. Int. Ed. 38 (1999) 1570.
¨
[7] A. Berkessel, H. Groger, Asymmetric Organocatalysis, Wiley-VCH, Weinheim, 2005.
´
[8] M.J. Climent, A. Corma, V. Fornes, et al. Adv. Synth. Catal. 344 (2002) 1090.