Journal of Medicinal Chemistry
BRIEF ARTICLE
’ ACKNOWLEDGMENT
(12) Ghosh, A. K.; Shin, D.; Downs, D.; Koelsch, G.; Lin, X.;
Ermolieff, J.; Tang, J. Design of Potent Inhibitors for Human Brain
Memapsin 2 (β-Secretase). J. Am. Chem. Soc. 2000, 122, 3522–3523.
(13) Ghosh, A. K.; McKee, S. P.; Thomson, W. J. An Efficient
Synthesis of Hydroxyethylene Dipeptide Isosteres: The Core Unit of
Potent HIV-1 Protease Inhibitors. J. Org. Chem. 1991, 56, 6500–6503.
(14) (a) D’Aniello, F.; Taddei, M. A Stereoselective Method for the
Preparation of HIV-1 Protease Inhibitors Based on the Lewis Acid
Mediated Reaction of Allylsilanes and N-Boc-R-amino Aldehydes. J. Org.
Chem. 1992, 57, 5247–5250. (b) Ghosh, A. K.; Cappiello, J.; Shin, D.
Ring-closing metathesis strategy to unsaturated γ- and δ-lactones:
synthesis of hydroxyethylene isostere for protease inhibitors. Tetrahe-
dron Lett. 1998, 39, 4651–4654.
This work was supported by financial aid from the Xunta de
Galicia (to F.S. and grant PGIDIT 08CSA002209PR to M.C.V.)
and Ministerio de Educaciꢀon y Ciencia (grants CTQ2005-
00555/BQU and CTQ2008-03105 to R.J.E. and fellowships to
J.M.O. and J.L.D.). The Supercomputing Center of Galicia
(CESGA) provided computer time.
DEDICATION
†Dedicated to the memory of Professor Rafael Suau, recently
deceased.
(15) Schechter, I.; Berger, A. On the size of the active site in
proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967, 27, 157–162.
(16) Turner, R. T., III; Koelsch, G.; Hong, L.; Castenheira, P.;
Ghosh, A.; Tang, J. Subsite Specificity of Memapsin 2 (β-Secretase):
Implications for Inhibitor Design. Biochemistry 2001, 40, 10001–10006.
(17) Ghosh, A. K.; Bilcer, G.; Harwood, C.; Kawahama, R.; Shin, D.;
Hussain, K. A.; Hong, L.; Loy, J. A.; Nguyen, C.; Koelsch, G.; Ermolieff,
J.; Tang, J. Structure-Based Design: Potent Inhibitors of Human Brain
Memapsin 2 (β-Secretase). J. Med. Chem. 2001, 44, 2865–2868.
(18) Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh,
A. K.; Zhang, X. C.; Tang, J. Structure of the Protease Domain of
Memapsin 2 (β-Secretase) Complexed with Inhibitor. Science 2000,
290, 150–153.
(19) Spassov, V. Z.; Yan, L. A fast and accurate computational
approach to protein ionization. Protein Sci. 2008, 17, 1955–1970.
(20) Trylska, J.; Antosiewicz, J.; Geller, M.; Hodge, C. N.; Klabe,
R. M.; Head, M. S.; Gilson, M. K. Thermodynamic linkage between the
binding of protons and inhibitors to HIV-1 protease. Protein Sci. 1999,
8, 180–195.
’ ABBREVIATIONS USED
AD, Alzheimer’s disease; APP, amyloid precursor protein;
BACE, β-site APP cleaving enzyme; QM, quantum mechanics;
SPR, surface plasmon resonance; HE, hydroxyethylene; LBHB,
low barrier hydrogen bond; FRET, fluorescence resonance
energy transfer; MM, molecular mechanics; MD, molecular
dynamics; HIV-1 PR, human immunodeficiency virus type 1
protease; HB, hydrogen bond
’ REFERENCES
(1) Selkoe, D. J. Translating cell biology into therapeutic advances in
Alzheimer’s disease. Nature 1999, 399, A23–A31.
(2) Villaverde, M. C.; Gonzꢀalez-Louro, L.; Sussman, F. The Search
for Drug Leads Targeted to the β-Secretase: An Example of the Roles of
Computer Assisted Approaches in Drug Discovery. Curr. Top. Med.
Chem. 2007, 7, 980–990.
(3) Lin, X.; Koelsch, G.; Wu, S.; Downs, D.; Dashti, A.; Tang, J.
Human aspartic protease memapsin 2 cleaves the β-secretase site of
β-amyloid precursor protein. Proc. Natl. Acad. Sci. U.S.A. 2000,
97, 1456–1460.
(21) Coates, L.; Tuan, H.-F.; Tomanicek, S.; Kovalevsky, A.; Mus-
tyakimov, M.; Erskine, P.; Cooper, J. The Catalytic Mechanism of an
Aspartic Proteinase Explored with Neutron and X-ray Diffraction. J. Am.
Chem. Soc. 2008, 130, 7235–7237.
(22) Schutz, C. N.; Warshel, A. The Low Barrier Hydrogen Bond
(4) Silvestri, R. Boom in the Development of Non-peptidic β-
Secretase (BACE1) Inhibitors for the Treatment of Alzheimer’s Disease.
Med. Res. Rev. 2009, 29, 295–338.
(LBHB) Proposal Revisited: The Case of the Asp His Pair in Serine
Proteases. Proteins 2004, 44, 711–723.
3 3 3
(23) Jaskꢀolski, M.; Tomaselli, A. G.; Sawyer, T. K.; Staples, D. G.;
Heinrikson, R. L.; Schneider, J.; Kent, S. B. H.; Wlodawer, A. Structure at
2.5 Å Resolution of Chemically Synthesized Human Immunodeficiency
Virus Type 1 Protease Complexed with a Hydroxyethylene-Based
Inhibitor. Biochemistry 1991, 30, 1600–1609.
(24) Frey, P. A.; Whitt, S. A.; Tobin, J. B. A low-barrier hydrogen
bond in the catalytic triad of serine proteases. Science 1994,
264, 1927–1930.
(25) Porter, M. A.; Molina, P. A. The Low-Barrier Double-Well
Potential of the Oδ1ꢀHꢀOδ1 Hydrogen Bond in Unbound HIV
Protease: A QM/MM Characterization. J. Chem. Theory Comput.
2006, 2, 1675–1684.
(26) Vidossich., P.; Carloni, P. Binding of Phosphinate and Phos-
phonate Inhibitors to Aspartic Proteases: A First-Principles Study
J. Phys. Chem. B 2006, 110, 1437–1442.
(5) (a) Ghosh, A. K.; Gemma, S.; Tang, J. β-Secretase as a
Therapeutic Target for Alzheimer’s Disease. Neurotherapeutics 2008,
5, 399–408. (b) Ghosh, A. K. Harnessing Nature’s Insight: Design of
Aspartyl Protease Inhibitors from Treatment of Drug-Resistant HIV to
Alzheimer’s Disease. J. Med. Chem. 2009, 52, 2163–2176.
(6) Polgꢀar, T.; Keser€u, G. M. Virtual Screening for β-Secretase
(BACE1) Inhibitors Reveals the Importance of Protonation States at
Asp32 and Asp228. J. Med. Chem. 2005, 48, 3749–3755.
(7) Park, H.; Lee, S. Determination of the Active Site Protonation
State of β-Secretase from Molecular Dynamics Simulation and Docking
Experiment: Implications for Structure-Based Inhibitor Design. J. Am.
Chem. Soc. 2003, 125, 16416–16422.
(8) Rajamani, R.; Reynolds, C. H. Modeling the Protonation States
of the Catalytic Aspartates in β-Secretase. J. Med. Chem. 2004,
47, 5159–5166.
(9) Yu, N.; Hayik, S. A.; Wang, B.; Liao, N.; Reynolds, C. H.; Merz,
K. M., Jr. Assigning the Protonation States of Key Aspartates in β-
Secretase Using QM/MM X-ray Structure Refinement. J. Chem. Theory
Comput. 2006, 2, 1057–1069.
(10) Domínguez, J. L.; Christopeit, T.; Villaverde, M. C.; Gossas, T.;
Otero, J. M.; Nystr€om, S.; Baraznenok, V.; Lindstr€om, E.; Danielson,
U. H.; Sussman, F. Effect of the Protonation State of the Titratable
Residues on the Inhibitor Affinity to BACE-1. Biochemistry 2010,
49, 7255–7263.
(11) (a) Bock, K.; Lundt, I.; Pedersen, C. Preparation of some
bromodeoxyaldonic acids. Carbohydr. Res. 1979, 68, 313–319. (b)
Lundt, I.; Pedersen, C. Preparation of some 2,3-Dideoxylactones by
an Unusual Catalytic Hydrogenolysis. Synthesis 1986, 1052–1054.
3085
dx.doi.org/10.1021/jm101568y |J. Med. Chem. 2011, 54, 3081–3085