R. M. Duke, T. Gunnlaugsson / Tetrahedron Letters 52 (2011) 1503–1505
1505
with concomitant formation of a long wavelength absorption band,
Acknowledgements
centred at ca. 495 nm, and with the formation of a ‘pseudo’ isos-
bestic point (e.g., a small shift being observed for this isosbestic
point at higher equivalents of FÀ) at 426 nm. Large changes were
also observed at shorter wavelengths, where the absorption band
at 327 nm was enhanced dramatically, but these changes were also
accompanied with a large decrease in the absorbance band centred
at 272 nm, and previously assigned to the phenyl part of the urea
receptor moiety. As for the long wavelength changes, two ‘pseudo’
isosbestic points were observed at 370 and 397 nm, respectively.
These changes were similar to those seen upon interactions of fluo-
ride with anion receptor derivatives via the 4-amino moiety of the
naphthalimide structure,6 indicating a potential common mecha-
nism, that is, deprotonation of the urea proton adjacent to the
naphthalimide occurred at high concentrations of FÀ. Additionally,
these changes were reversed upon the addition of protic solvents
such as MeOH or H2O. The above changes in the absorption spectra
were also clearly visible to the naked eye, where the colour chan-
ged from light yellow to red, enabling the use of 1 as a colorimetric
sensor for FÀ.
We like to thank TCD (College award to R.M.D.), Science Foun-
dation Ireland for grant SFI RFP 2008, and HEA-PRTLI Cycle 3 and
Cycle 4 (CSCB) for financial support. We thank Dr. John E. O’Brien
for assisting with NMR measurements and Dr. Emma B. Veale for
helpful discussions.
References and notes
1. Gale, P. A.; Gunnlaugsson, T. Chem. Soc. Rev. 2010, 39, 3581–4008.
2. The use of naphthalimides in sensing was recently reviewed in: Duke, M. R.;
Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, F. Chem. Soc. Rev. 2010,
39, 3936.
3. Gale, P. A. Chem. Soc. Rev. 2010, 39, 3746; Gunnlaugsson, T.; Glynn, M.; Tocci, G.
M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094.
4. Galbraith, E.; James, T. D. Chem. Soc. Rev. 2010, 39, 3831; Amendola, V.;
Fabbrizzi, L.; Mosca, L. Chem. Soc. Rev. 2010, 39, 3889; Cametti, M.; Rissanen, K.
Chem. Commun. 2009, 2809; Gale, P. A.; Garcia-Garrido, S. E.; Garric, J. Chem.
Soc. Rev. 2008, 37, 151; Padros, P.; Quesada, R. Supramol. Chem. 2008, 20, 201;
Sessler, J. L.; Gale, P. A.; Cho, W. S., Anion Receptor Chemistry; Royal Society of
Chemistry, 2006.
5. Steed, J. W. Chem. Soc. Rev. 2010, 39, 3686; Li, A.-F.; Wang, J.-H.; Wang, F.; Jiang,
Y.-B. Chem. Soc. Rev. 2010, 39, 3729.
In contrast to the minor changes in the absorption spectrum at
low concentration of FÀ, large changes were seen in the fluores-
cence emission spectrum of the ICT transition within the same con-
centration range. Here, the naphthalimide emission was quenched
by ca. 75% in the presence of ca. 50 equiv of FÀ, as shown in Figure
5. Concomitantly, smaller enhancements were also seen at lower
wavelengths (e.g., ca. 410 nm as shown in Fig. 5) and at long wave-
length, ca. 650 nm, but analysis of the long wavelength changes did
not give accurate binding information. The changes in the fluores-
cence emission intensity as a function of anion equivalents for the
changes in the ICT band are shown in the insert to Figure 5, and the
results indicate that a two-step process occurred over the course of
the titrations, which was most likely due to hydrogen bonding to
the urea receptor followed by deprotonation at higher concentra-
tions of the anion.
In summary, we have developed 3-urea-1,8-naphthalimide 1 as
a fluorescent sensor for anions. We have demonstrated that the an-
ion sensing is most likely to occur via deprotonation of the urea
receptor at high concentration making this a highly selective sen-
sor for basic anions such as fluoride. This feature has both environ-
mental and biological relevance, at the same time as
demonstrating that the 3-amino moiety of the 1,8-naphthalimide
can be employed in anion sensing. We are currently working on
developing novel sensors where the 3- and 4-positions of this ver-
satile fluorophore are derivatised with a view to improving both
the sensitivity and the selectivity of the anion recognition through
synergetic action of more than one hydrogen bonding donor.
6. Gunnlaugsson, T.; Kruger, P. E.; Lee, T. C.; Parkesh, R.; Pfeffer, F. M.; Hussey, G.
M. Tetrahedron Lett. 2003, 44, 6575; Gunnlaugsson, T.; Kruger, P. E.; Jensen, P.;
Pfeffer, F. M.; Hussey, G. M. Tetrahedron Lett. 2003, 44, 8909; Pfeffer, F. M.;
Buschgens, A. M.; Barnett, N. W.; Gunnlaugsson, T.; Kruger, P. E. Tetrahedron
Lett. 2005, 46, 6579.
7. Henderson, C. L.; Li, J.; Nation, R. L.; Velkov, T.; Pfeffer, F. M. Chem. Commun.
2010, 3197; Yoon, J.; Qian, X.; Kim, J. S.; Lee, C.; Han, S. J.; Kim, N. H.; Kim, S.;
Xu, Z. Tetrahedron. Lett. 2007, 48, 9151.
8. Lowe, A. J.; Dyson, G. A.; Pfeffer, F. M. Eur. J. Org. Chem. 2008, 1559; Lowe, A. J.;
Pfeffer, F. M. Chem. Commun. 2008, 1871; Lowe, A. J.; Dyson, G. A.; Pfeffer, F. M.
Org. Biomol. Chem. 2007, 5, 1343; Tian, H.; Liu, B. J. Mater. Chem. 2005, 15, 2681;
Liu, B.; Tian, H. Chem. Lett. 2005, 34, 686.
9. Mashraqui, S. H.; Betkar, R.; Chandiramani, M.; Quinonero, D.; Frontera, A.
Tetrahedron Lett. 2010, 51, 596; Bao, X. P.; Wang, L.; Wu, L.; Li, Z. Y. Supramol.
Chem. 2008, 20, 467.
10. Singh, N.; Kaur, N.; Dunn, J.; Behan, R.; Malrooney, R. C.; Callan, J. F. Eur. Polym.
J. 2009, 45, 272; Sun, Y. M.; Zhong, C.; Gong, R.; Fu, E. Q. Org. Biomol. Chem.
2008, 6, 3044; Li, Y.; Cao, L.; Tian, H. J. Org. Chem. 2006, 71, 8279.
11. Elmes, R. B. P.; Gunnlaugsson, T. Tetraherdon Lett. 2010, 51, 4082; Veale, E. B.;
Tocci, M. G.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Org. Biomol. Chem.
2009, 7, 3447; Veale, E. B.; Gunnlaugsson, T. J. Org. Chem. 2008, 73, 8073; Ali, H.
D. P.; Kruger, P. E.; Gunnlaugsson, T. New J. Chem. 2008, 32, 1153; Duke, R. M.;
Gunnlaugsson, T. Tetrahedron Lett. 2007, 48, 8043.
12. Veale, E. B.; Gunnlaugsson, T. J. Org. Chem. 2010, 75, 5513; Veale, E. B.;
Frimannsson, D. O.; Lawler, M.; Gunnlaugsson, T. Org. Lett. 2009, 11, 4040;
Gunnlaugsson, T.; Kruger, P. E.; Jensen, P.; Tierney, J.; Ali, H. D. P.; Hussey, M. G.
J. Org. Chem. 2005, 70, 10875.
13. Esteban-Gomez, D.; Fabbrizzi, L.; Liechelli, M. J. Org. Chem. 2005, 70, 5717.
14. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Lynch, P. L. M. New J.
Chem. 1996, 20, 871.
15. Lv, M.; Xu, H. Curr. Med. Chem. 2009, 36, 4797.
16. 2-Ethyl-5-aminobenzo[d,e]isoquinoline-1,3-dione (2). 3-Amino-1,8-naphthalic
anhydride (0.25 g, 1.18 mmol) and 70% ethylamine were refluxed in 1,4-
dioxane for 16 h. The reaction mixture was poured into H2O and the resulting
precipitate was isolated by suction filtration to give 2 as an orange solid (0.14 g,
51%). Mp 275–277 °C (Lit. mp18 276 °C); dH .(400 MHz, DMSO-d6), 8.07 (1H, d,
J = 7.0 Hz, Naph-H7), 8.02 (1H, d, J = 7.6, Naph-H5), 7.96 (1H, s, Naph-H2), 7.60
(1H, dd, J = 8.16 and 7.60 Hz, Naph-H6), 7.27 (1H, s, Naph-H4), 6.00 (2H, br s, NH2),
4.04 (2H, q, J = 7.0 Hz, NCH2), 1.18 (3H, t, J = 7.0 Hz, CH3); dc (100 MHz, DMSO-d6),
163.8 (C@O), 163.7 (C@O), 148.1 (q), 133.8 (q), 131.7 (CH), 127.3 (CH), 125.6
(CH), 122.9 (q), 122.1 (CH), 121.9 (q), 120.8 (q), 112.0 (CH), 34.9 (CH2), 13.4 (CH3).
17. 2-Ethyl-5-[(4-trifluoromethylphenyl)ureidocarbamoyl]-benzo[d,e]isoquinoline-1,3-
800
800
700
600
500
600
400
200
0
dione (1). Compound
2 (0.380 g, 1.58 mmol) and 4-trifluoromethylphenyl
isocyanate (0.296 g, 1.58 mmol) were refluxed in MeCN for 24 h. The resulting
precipitate was isolated by suction filtration to give a beige solid (0.515 g, 76%).
Mp337–339 °C; Anal. Cacld for C22H16N3O3F3: C, 61.83; H, 3.77; N, 9.83. Found: C,
61.65; H, 3.81; N, 9.65. HRMS (ES+): Calcd for C22H17N3O3F3 [M+H]+: 428.1222.
Found: 428.1242; dH (400 MHz, DMSO-d6), 9.41 (1H, s, NHurea), 9.22 (1H, s,
NHurea), 8.48 (2H, d, J = 8.2 Hz, Naph-H7,5), 8.27 (2H, d, J = 7.5 Hz, Naph-H2,4),
7.77–7.70 (3H, m, Naph-H6, Ar–H), 7.64 (2H, d, J = 7.9 Hz, Ar–H), 4.05 (2H, q,
J = 6.7 Hz, NCH2), 1.22 (3H, t, J = 6.7 Hz, CH3); dc (100 MHz, DMSO-d6) 163.4
(C@O), 163.2 (C@O), 152.6 (q), 143.4 (q), 138.5 (q), 133.6 (CH), 132.4 (q), 128.7
(CH), 127.7 (CH), 126.3 (CH), 124.9 (q, J13C–19F = 270'Hz), 123.7 (q), 123.6 (CH),
122.8 (q), 122.4 (CF3, J13C–13F = 32 Hz), 122.1 (q), 120.1 (CH), 119.8 (CH), 35.0
0 10 20 30 40 50 60 70 80 90100
Guest Equivalents
400
300
200
100
0
400
450
500
550
600
(CH2), 13.4 (CH3); dN (60 MHz, DMSO-d6), 111.0, 111.6; IR (solid) mmax (cmÀ1
)
Wavelength (nm)
3371, 3304, 1656, 1555, 1326, 1231, 1154, 1110, 1068, 1055, 1017, 843, 787, 686.
18. Pardo, A.; Martin, E.; Poyato, J. M. L.; Camacho, J. J. J. Photochem. Photobiol., A
1987, 41, 69.
Figure 5. The changes in the fluorescence emission spectra of 1 [1.2 Â 10À5 M]
upon addition of FÀ (0–100 equiv) in DMSO. Insert: The changes at 455 nm as a
function of equivalents of guest added.