A. S. Weller et al.
FULL PAPER
NMR (CD2Cl2, 126 MHz, 290 K): δ = 162.31 (q, JBC = 50 Hz,
data for the exchange process in 7; Figure S2, Eyring plot and
BArF4), 135.37 (s, BArF4), 131.22 (s, C8), 130.19 (s, C15), 129.42 activation parameters for the exchange process in 7.
(qq, JFC = 31, JBC = 3 Hz, BArF4), 129.02 (s, 2 H, C16), 126.00 (s,
2 H, C13), 125.16 (q, JFC = 272 Hz, BArF4), 124.73 (s, 2 H, C14),
[1] C. Elschenbroich, Organometallics, Wiley-VCH, Weinheim,
123.95 (s, 2 H, C17), 120.42 (s, 2 H, C1), 118.23–118.09–117.90 (m,
Germany, 2006.
BArF4), 99.07 (d, JRhC = 3 Hz, 2 H, C2), 86.37 (d, JRhC = 3 Hz, 2
[2] S. M. Hubig, S. V. Lindeman, J. K. Kochi, Coord. Chem. Rev.
H, C3), 39.03–38.64 (m, CH2), 26.46 (s, Me), 25.50–25.11 (m,
2000, 200, 831–873.
PCH2CH) ppm.
[3] P. J. Fagan, M. D. Ward, J. C. Calabrese, J. Am. Chem. Soc.
1989, 111, 1698–1719; E. L. Muetterties, J. R. Bleeke, E. J.
Wucherer, T. Albright, Chem. Rev. 1982, 82, 499–525.
[4] E. O. Fischer, W. Hafner, Z. Naturforschung, Teil B 1955, 10,
665–668.
[Rh(coronene)(PiBu3)2][BArF4] (9): 1H NMR (CD2Cl2, 500 MHz,
290 K): δ = 8.52 (vbr, 12 H, HAr), 7.72 (br., 8 H, BArF4), 7.56 (s,
4 H, BArF4), 2.02 (br., 6 H, PCH2CH), 1.55 (br., 12 H, CH2), 0.58
(br., 36 H, Me) ppm. 31P{1H} NMR (CD2Cl2, 121 MHz, 290 K):
δ = 48.4 (br.), 26.4 (br.) ppm. 1H NMR (CD2Cl2, 500 MHz, 200 K):
δ = 8.72 (obscured, HAr), 8.35 (s, 2 H, H), 8.32 (d, JHH = 7 Hz, 2
H, H), 8.18–8.11 (m, 4 H, H), 7.90 (d, JHH = 7 Hz, 2 H, 2 H), 7.72
(br., 8 H, BArF4), 7.56 (s, 4 H, BArF4), 1.86 (br.), 1.45 (br.), 0.81
(t, 6 H), –0.45 (br., 6 H, Me on P2) ppm. 31P{1H} NMR (CD2Cl2,
121 MHz, 190 K): δ = 45.2 (dd, JRhP = 237, JPP = 36 Hz, P1), 13.0
(dd, JRhP = 191, JPP = 36 Hz, P2) ppm.
[5] For leading references, see: J. Gimeno, V. Cadierno, P. Crochet,
Comprehensive Organometallic Chemistry (Eds.: R. H.
Crabtree, D. M. P. Mingos), Elsevier, New York, 2007, vol. 6,
p. 485–550; P. A. Wender, T. J. Williams, Angew. Chem. Int. Ed.
2002, 41, 4550–4551; C. R. Landis, J. Halpern, Organometallics
1983, 2, 840–842; L. Hintermann, L. Xiao, A. Labonne, U.
Englert, Organometallics 2009, 28, 5739–5748.
[6] M. A. Bennett, Z. B. Lu, X. Q. Wang, M. Bown, D. C. R.
Hockless, J. Am. Chem. Soc. 1998, 120, 10409–10415.
[7] G. Zhu, K. E. Janak, J. S. Figueroa, G. Parkin, J. Am. Chem.
Soc. 2006, 128, 5452–5461.
[8] A. Stanger, H. Weismann, J. Organomet. Chem. 1996, 515, 183–
191.
[9] J. Muller, P. E. Gaede, C. Hirsch, K. Qiao, J. Organomet. Chem.
1994, 472, 329–335.
[10] R. M. Chin, L. Z. Dong, S. B. Duckett, M. G. Partridge, W. D.
Jones, R. N. Perutz, J. Am. Chem. Soc. 1993, 115, 7685–7695.
[11] For representative examples of triphenylene complexes, see: M.
Munakata, G. L. Ning, Y. Suenaga, T. Kuroda-Sowa, M. Mae-
kawa, T. Ohta, Angew. Chem. Int. Ed. 2000, 39, 4555–4556; J.
Muller, C. Hirsch, K. Qiao, K. Ha, Z. Anorg. Allg. Chem. 1996,
622, 1441–1448.
[12] M. Maekawa, T. Minematsu, A. Nabei, H. Konaka, T. Kur-
oda-Sowa, M. Munakata, Inorg. Chim. Acta 2006, 359, 168–
182.
[Rh(6-tBu-HBC)(COD)][BArF4] (10): 1H NMR (CD2Cl2, 500 MHz,
290 K): δ = 9.59 (s, 2 H, HAr), 9.48 (s, 2 H, HAr), 9.45 (s, 2 H,
HAr), 9.42 (s, 2 H, HAr), 8.82 (s, 2 H, HAr), 8.06 (s, 2 H, H1), 7.72
(br., 8 H, BArF4), 7.56 (s, 4 H, BArF4), 3.73 (s, 4 H, C4H8C4H4),
1.96 (s, 9 H, tBu), 1.86 (s, 9 H, tBu), 1.85 (s, 18 H, tBu), 1.81 (s,
18 H, tBu), 1.60 (s, 8 H, C4H8C4H4) ppm. 13C{1H} NMR (CD2Cl2,
126 MHz, 290 K): δ = 151.82 (d, JRhC = 3 Hz, CAr), 151.60 (s, CAr),
135.35 (s, BArF4), 132.38 (s, CAr), 131.35 (d, JRhC = 4 Hz, CAr),
130.30 (s, CAr), 129.44 (qq, JFC = 32, JBC = 3 Hz, BArF4), 125.14
(q, JFC = 272 Hz, BArF4), 125.02 (s, CAr), 124.82 (s, CAr), 124.23
(s, CAr coupled to HAr), 123.72 (s, CAr), 123.62 (s, CAr), 122.47 (s,
CAr), 121.09 (s, CAr coupled to HAr), 120.92 (s, CAr coupled to
HAr), 120.87 (s, CAr), 120.54 (s, CAr coupled to HAr), 120.38 (s, CAr
coupled to HAr), 120.06 (s CAr), 118.22–117.93 (m, BArF4), 115.13
(s CAr), 109.13 (s CAr), 108.87 (d, JRhC = 2 Hz, CAr), 102.78 (s
[13] F. A. Cotton, E. V. Dikarev, M. A. Petrukhina, J. Am. Chem.
Soc. 2001, 123, 11655–11663.
[14] R. D. Rogers, J. L. Atwood, T. A. Albright, W. A. Lee, M. D.
Rausch, Organometallics 1984, 3, 263–270.
1
CAr), 91.48 (d, JRhC = 2 Hz, C1), 83.45 (d, JRhC = 13 Hz, C2),
36.44 (t, CtBu coupled to HtBu), 32.19 (s, tBu), 32.05 (s, tBu), 31.25
(s, tBu), 31.17 (s, tBu) ppm.
[15] For representative examples of pyrene complexes, see: J. A. Re-
ingold, K. L. Virkaitis, G. B. Carpenter, S. Sun, D. A. Sweigart,
P. T. Czech, K. R. Overly, J. Am. Chem. Soc. 2005, 127, 11146–
11158; A. Arrais, E. Diana, G. Gervasio, R. Gobetto, D. Mara-
bello, P. L. Stanghellini, Eur. J. Inorg. Chem. 2004, 1505–1513;
M. Gorlov, L. Kloo, Coord. Chem. Rev. 2008, 252, 1564–1576.
[16] M. Munakata, L. P. Wu, T. Kuroda-Sowa, M. Maekawa, Y.
Suenaga, G. L. Ning, T. Kojima, J. Am. Chem. Soc. 1998, 120,
8610–8618.
[17] For representative examples of corannulene complexes, see:
M. A. Petrukhina, Angew. Chem. Int. Ed. 2008, 47, 1550–1552.
[18] J. S. Siegel, K. K. Baldridge, A. Linden, R. Dorta, J. Am.
Chem. Soc. 2006, 128, 10644–10645.
Crystallography: Relevant details about the structure refinements
are given in Table 2. Data were carried on an Enraf Nonius Kappa
CCD diffractometer using graphite monochromated Mo-Kα radia-
tion (λ = 0.71073 Å) and a low-temperature device;[47] data was
collected using COLLECT, reduction and cell refinement was per-
formed using DENZO/SCALEPACK.[48] Structures were solved
using SHELXS-97 (7)[49] and SIR2004 (for 2, 3, 4, 6, 8, 9, 10)[50]
and refined full-matrix least-squares on F2 using SHELXL-97.[49]
All non-hydrogen atoms were refined anisotropically. Problematic
solvent disorder in the structures of 6, 9 and 10 was treated using
the SQUEEZE algorithm.[51] Further details of disorder modelling
are documented in the crystallographic information files under the
heading _refine_special_details. Restraints to thermal parameters
were applied were necessary in order to maintain sensible values.
Graphical representations of the structures were made using Crys-
talMaker.
[19] R. J. Angelici, B. Zhu, S. Fedi, F. Laschi, P. Zanello, Inorg.
Chem. 2007, 46, 10901–10906.
[20] M. D. Watson, A. Fechtenkotter, K. Mullen, Chem. Rev. 2001,
101, 1267–1300.
[21] B. El Hamaoui, L. Zhi, J. Wu, J. Li, N. T. Lucas, Z. Tomovic,
U. Kolb, K. Mullen, Adv. Funct. Mater. 2007, 17, 1179–1187.
[22] P. T. Herwig, V. Enkelmann, O. Schmelz, K. Mullen, Chem.
Eur. J. 2000, 6, 1834–1839.
CCDC-797081 (for 2), -797082 (for 3), -797083 (for 4), -797084 (for
6), -797085 (for 7), -797086 (for 8), -797087 (for 9), and -797088
(for 10) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[23] S. M. Draper, D. J. Gregg, E. R. Schofield, W. R. Browne, M.
Duati, J. G. Vos, P. Passaniti, J. Am. Chem. Soc. 2004, 126,
8694–8701; N. T. Lucas, H. M. Zareie, A. M. McDonagh, ACS
Nano 2007, 1, 348–354.
[24] A. Simon, C. Joblin, J. Phys. Chem. A 2009, 113, 4878–4888
and references therein.
Supporting Information (see footnote on the first page of this arti-
cle): Figure S1, Experimental and simulated NMR spectroscopic
[25] T. Murahashi, M. Fujimoto, M.-a. Oka, Y. Hashimoto, T. Ue-
mura, Y. Tatsumi, Y. Nakao, A. Ikeda, S. Sakaki, H. Kurosawa,
1624
www.eurjic.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2011, 1614–1625