S. Jin et al. / Journal of Molecular Structure 991 (2011) 1–11
11
5. Conclusions
References
[1] M. Maamen, D.M. Gordon, Acc. Chem. Res. 28 (1995) 37 (and references
therein).
[2] S. Mohamed, D.A. Tocher, M. Vickers, P.G. Karamertzanis, S.L. Price, Cryst.
Growth Des. 9 (2009) 2881.
[3] V.R. Hathwar, R. Pal, T.N. Guru Row, Cryst. Growth Des. 10 (2010) 3306.
[4] M. Du, Z.H. Zhang, W. Guo, X.J. Fu, Cryst. Growth Des. 9 (2009) 1655.
[5] Y. Kobayashi, J. Maeda, T. Ando, K. Saigo, Cryst. Growth Des. 10 (2010) 685.
[6] G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer-
Verlag, Berlin, 1991.
[7] (a) C.B. Aakeröy, A.M. Beatty, Aust. J. Chem. 54 (2001) 409;
(b) J.W. Steed, J.L. Atwood, Supramolecular Chemistry, Wiley, Chichester, 2000.
[8] (a) A.D. Burrows, Struct. Bond. 108 (2004) 55;
Five organic salts with different topologies have been prepared
and structurally characterized. The different hydrogen bond inter-
action modes of the carboxylate anions and the 2-aminoheterocy-
clic cations lead to a wide range of different structures such as 3D
layer structure, 3D network structure, and 3D ABAB layer structure.
Despite variations in molecular shape on the carboxylic acids, there
all existed strong intermolecular NAHꢀꢀꢀO hydrogen bonds (ionic or
neutral). In naphthyridine salts 1, and 2 there are also ionic and
neutral NAHꢀꢀꢀN hydrogen bonds between HL+ and L, so both form
the most commonly observed naphthyridine dimers.
(b) D. Braga, L. Maini, M. Polito, F. Grepioni, Struct. Bond. 111 (2004) 1.
[9] (a) M.C. Etter, Acc. Chem. Res. 23 (1990) 120;
From this study it can be seen that the 2-aminoheterocyclic
compounds such as 5,7-dimethyl-1,8-naphthyridine-2-amine and
4-phenylthiazol-2-amine will form salts with the acidic molecules.
All the salts are formed by the proton transfer process resulting in a
2-aminoheterocyclic ion with a single positive charge. For the
three compounds (1, 2, and 3) concerning 5,7-dimethyl-1,8-naph-
thyridine-2-amine, the positive charges are in different N atoms.
Only in the salt 1 the most basic nitrogen atom adjacent to the
amine group (for the NH2 group is a more strong electron-donating
group than that of the CH3 group) in the naphthyridine ring is pro-
tonated. But in 2 the least basic NH2 group is protonated. This phe-
nomenon may be explained by the rule ‘‘strongest donor to
strongest acceptor’’, for the carboxylic acids present in 1–2, the
2-chloronicotinic acid has the relatively smaller Pka than the p-
hydroxybenzoic acid discussed in this manuscript. Although
maleic acid with the lowest Pka1 among 2-chloronicotinic acid, p-
hydroxybenzoic acid, and maleic acid, this molecule may be too
flexible introducing factors that result more important than the
small difference between the donors to decide the preferred
molecular interactions.
(b) K.T. Holman, A.M. Pivovar, J.A. Swift, M.D. Ward, Acc. Chem. Res. 34 (2001) 107.
[10] D.P. McNamara, S.L. Childs, J. Giordano, A. Iarriccio, J. Cassidy, M.S. Shet, R.
Mannion, E. O’Donnell, A. Park, Pharm. Res. 23 (2006) 1888.
[11] D.R. Weyna, T. Shattock, P. Vishweshwar, M.J. Zaworotko, Cryst. Growth Des. 9
(2009) 1106.
[12] M. Du, Z.H. Zhang, X.J. Zhao, Cryst. Growth Des. 5 (2005) 1247.
[13] G.R. Desiraju, Crystal Engineering, The Design of Organic Solids, Elsevier,
Amsterdam, 1989.
[14] (a) L. Leiserowitz, Acta Crystallogr. B32 (1976) 775;
(b) S.V. Kolotuchin, E.E. Fenlon, S.R. Wilson, C.J. Loweth, S.C. Zimmerman,
Angew. Chem. Int. Ed. Engl. 34 (1995) 2654;
(c) S.S. Kuduva, D.C. Craig, A. Nangia, G.R. Desiraju, J. Am. Chem. Soc. 121
(1999) 1936;
(d) J. Bernstein, M.C. Etter, L. Leiserowitz, Struct. Correl. 2 (1994) 431;
(e) B. Moulton, M.J. Zaworotko, Chem. Rev. 101 (2001) 1629;
(f) L.S. Reddy, S.J. Bethune, J.W. Kampf, N. Rodríguez-Hornedo, Cryst. Growth
Des. 9 (2009) 378;
(g) I.S. Lee, D.M. Shin, Y.K. Chung, Cryst. Growth Des. 3 (2003) 521;
(h) B.R. Bhogala, A. Nangia, Cryst. Growth Des. 3 (2003) 547.
[15] (a) P. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res. 47 (2005) 386;
(b) T.R. Shattock, K.K. Arora, P. Vishweshwar, M.J. Zaworotko, Cryst. Growth Des.
8 (2008) 4533;
(c) K. Biradha, G. Mahata, Cryst. Growth Des. 5 (2005) 61;
(d) B.Q. Ma, P. Coppens, Chem. Commun. (2003) 504.
[16] (a) J.C. MacDonald, P.C. Dorrestein, M.M. Pilley, Cryst. Growth Des. 1 (2001) 29;
(b) M.L. Highfill, A. Chandrasekaran, D.E. Lynch, D.G. Hamilton, Cryst. Growth
Des. 2 (2002) 15;
(c) P. Vishweshwar, A. Nangia, V.M. Lynch, J. Org. Chem. 67 (2002) 556;
(d) G.S. Nichol, W. Clegg, Cryst. Growth Des. 9 (2009) 1844;
(e) Y.B. Men, J.L. Sun, Z.T. Huang, Q.Y. Zheng, CrystEngCommun 11 (2009) 978.
[17] D.E. Lynch, G.D. Jones, Acta Crystallogr. B60 (2004) 748 (and the references
cited therein).
[18] S. Skovsgaard, A.D. Bond, CrystEngCommun 11 (2009) 444.
[19] (a) S.W. Jin, B. Liu, W.Z. Chen, Chin. J. Struct. Chem. 26 (2007) 287;
(b) S.W. Jin, D.Q. Wang, Z.J. Zhi, L.Q. Wang, Pol. J. Chem. 83 (2009) 1937;
(c) S.W. Jin, D.Q. Wang, X.L. Wang, M. Guo, Q.J. Zhao, J. Inorg. Organomet.
Polym. 18 (2008) 300.
[20] A. Mangini, M. Colonna, Gazz. Chim. Ital. LXXIII (1943) 323.
[21] T.M. Potewar, S.A. Ingale, K.V. Srinivasan, Tetrahedron 64 (2008) 5019.
[22] Bruker, SMART and SAINT, Bruker AXS, Madison, 2004.
[23] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112.
[24] (a) D.E. Lynch, L.C. Thomas, G. Smith, K.A. Byriel, C.H.L. Kennard, Aust. J. Chem.
51 (1998) 867;
Only in 3, 4, and 5, the most common hydrogen-bonded R22(8)
graph sets for 2-aminoheterocyclic derivatives have been ob-
served. There are also R22(7) and R22(8) fused hydrogen bond graph
sets in salts 4, and 5.
In addition all products possess weak CAHꢀꢀꢀO or CH3AO hydro-
gen bonds. Two types of secondary CAHꢀꢀꢀO (CH3AO) hydrogen
bonds were observed based upon their geometric preferences, in-
tra- and interchain interactions. Based upon an analysis of the met-
rics displayed by each set of interactions, it seems that intra- and
interchain CAHꢀꢀꢀO (CH3AO) interactions are of equal structural
importance. There are also CH3–
3. Organic salt 4 possesses CH–
intermolecular S– interaction in 5.
p
interactions in compounds 1–
p
interaction. There exists strong
p
In conclusion, we have shown that 3D structures can be con-
structed by the collective weak interactions such as strong direc-
tional hydrogen bond, mixture of strong and weak hydrogen
bond and some other non-covalent interactions.
(b) G. Smith, J.M. White, Aust. J. Chem. 54 (2001) 97.
[25] D.H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry, fifth
ed., McGraw-Hill, London, 1995.
[26] J. Lu, N. Wang, H.T. Liu, J. Coord. Chem. 62 (2009) 1980.
[27] R.W. Gellert, I.N. Hsu, Acta Crystallogr. C44 (1988) 311.
[28] N. Schultheiss, K. Lorimer, S. Wolfe, J. Desper, CrystEngCommun 12 (2010) 742.
[29] S. Shanmuga Sundara Raj, H.K. Fun, Z.L. Lu, W. Xiao, X.Y. Gong, C.M. Gen, Acta
Crystallogr. C56 (2000) 1015.
Supporting information
[30] A. Ballabh, D.R. Trivedi, P.Dastidar.E. Suresh, CrystEngCommun 4 (2002) 135.
[31] J. Mo, J.H. Liu, Y.S. Pan, S.M. Zhang, X.D. Du, Acta Crystallogr. E64 (2008) o1702.
[32] M. Czugler, N. Báthori, CrystEngCommun 6 (2004) 494.
[33] J. Bernstein, R.E. Davis, L. Shimoni, N.L. Chang, Angew. Chem. Int. Ed. 34 (1995)
1555.
[34] (a) S.L. Childs, G.P. Stahly, A. Park, Mol. Pharmacol. 4 (2007) 323;
(b) C.B. Aakeröy, I. Hussain, J. Desper, Cryst. Growth Des. 6 (2006) 474;
(c) I. Majerz, Z. Malarski, L. Sobczyk, Chem. Phys. Lett. 274 (1997) 361.
[35] O. Au-Alvarez, R.C. Peterson, A.A. Crespo, Y.R. Esteva, H.M. Alvarez, A.M.P.
Stiven, R.P. Hernández, Acta Crystallogr. C55 (1999) 821.
[36] G.R. Form, E.S. Raper, Acta Crystallogr. B30 (1974) 342.
[37] A. Bondi, J. Phys. Chem. 68 (1964) 441.
[38] M. Felloni, A.J. Blake, P. Hubberstey, C. Wilson, M. Schröder, CrystEngCommun
4 (2002) 483.
[39] X.K. Gao, J.M. Dou, D.C. Li, F.Y. Dong, D.Q. Wang, J. Chem. Crystallogr. 35 (2005) 107.
[40] C.Q. Wan, J. Han, T.C.W. Mak, New J. Chem. 33 (2009) 707.
[41] S.H. Dale, M.R.J. Elsegood, M. Hemmings, A.L. Wilkinson, CrystEngCommun 6
(2004) 207.
Crystallographic data for the structural analysis have been
deposited with the Cambridge Crystallographic data center, CCDC
Nos. 765440 for 1, 673181 for 2, 765438 for 3, 766264 for 4, and
765309 for 5. Copies of this information may be obtained free of
charge from the +44 (1223)336 033 or Email: deposit@ccdc.cam.a-
Acknowledgments
We gratefully acknowledge the financial support of the Educa-
tion Office Foundation of Zhejiang Province (Project No.
Y201017321) and the financial support of the Zhejiang A & F Uni-
versity Science Foundation (Project No. 2009FK63).