Journal of the American Chemical Society
Communication
tures recently described.13 Furthermore, the porous materials
selectively adsorb CO2 over CH4 and N2 at room temperature
and up to 10 atm, for example, AgL-B adsorbs 40 cm3(STP)/g
of CO2 versus 12 and 6 cm3(STP)/g of CH4 and N2,
respectively.
At room temperature, CO2/CH4 selectivity is comparable or
exceeds the values of most ZIFs while CO2/N2 selectivity is
lower than several MOFs but exceeds the performance of the
well-described MOF-5.30,31 From the adsorption measurements
at different temperatures, the isosteric heat of absorption was
estimated to be 25 kJ/mol for CO2 and 19 kJ/mol for CH4, in
agreement with the hydrophobic nature of the pyrazole methyl
groups lining the intercapsular cavity. Indeed, these values are
consistent with those measured, for instance, in methylimida-
zolate framework ZIF-8 and hydrophobic molecular zeo-
lites.32,33
REFERENCES
■
(1) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011,
111, 6810−6918.
(2) Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Coord. Chem. Rev.
2008, 252, 825−841.
(3) Burd, S. D.; Ma, S. Q.; Perman, J. A.; Sikora, B. J.; Snurr, R. Q.;
Thallapally, P. K.; Tian, J.; Wojtas, L.; Zaworotko, M. J. J. Am. Chem.
Soc. 2012, 134, 3663−3666.
(4) Inokuma, Y.; Kawano, M.; Fujita, M. Nat. Chem. 2011, 3, 349−
358.
(5) Marti-Rujas, J.; Islam, N.; Hashizume, D.; Izumi, F.; Fujita, M.;
Kawano, M. J. Am. Chem. Soc. 2011, 133, 5853−5860.
(6) Duriska, M. B.; Neville, S. M.; Lu, J. Z.; Iremonger, S. S.; Boas, J.
F.; Kepert, C. J.; Batten, S. R. Angew. Chem., Int. Ed. 2009, 48, 8919−
8922.
(7) Mastalerz, M. Angew. Chem., Int. Ed. 2012, 51, 584−586.
(8) Dalgarno, S. J.; Thallapally, P. K.; Barbour, L. J.; Atwood, J. L.
Chem. Soc. Rev. 2007, 36, 236−245.
(9) Sozzani, P.; Bracco, S.; Comotti, A.; Ferretti, L.; Simonutti, R.
Angew. Chem., Int. Ed. 2005, 44, 1816−1820.
(10) Bunzen, J.; Iwasa, J.; Bonakdarzadeh, P.; Numata, E.; Rissanen,
K.; Sato, S.; Fujita, M. Angew. Chem., Int. Ed. 2012, 51, 3161−3163.
(11) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629−
1658.
(12) Oliveri, C. G.; Ulmann, P. A.; Wiester, M. J.; Mirkin, C. A. Acc.
Chem. Res. 2008, 41, 1618−1629.
(13) Wang, Y.; He, C. T.; Liu, Y. J.; Zhao, T. Q.; Lu, X. M.; Zhang,
W. X.; Zhang, J. P.; Chen, X. M. Inorg. Chem. 2012, 51, 4772−4778.
(14) Santillan, G. A.; Carrano, C. J. Inorg. Chem. 2008, 47, 930−939.
(15) Santillan, G. A.; Carrano, C. J. Cryst. Growth Des. 2009, 9,
1590−1598.
(16) Reger, D. L.; Foley, E. A.; Smith, M. D. Inorg. Chem. 2010, 49,
234−242.
(17) Reger, D. L.; Foley, E. A.; Semenluc, R. F.; Smith, M. D. Inorg.
Chem. 2007, 46, 11345−11355.
In conclusion, we reported the formation of unprecedented
cyclic hexameric structures of Ag(I) or Cu(I) coordinated with
properly designed multipodal bis(pyrazolyl)methane moiety
functionalized with an aryl thioether group. The use of a
diversity of anions results in the arrangement of the hexamers
in two types of microporous 3D structures. The robustness of
the crystalline structures obtained with the silver and copper
−
−
ions and the BF4 /PF6 anions, which behave as connectors
between hexameric supramolecules, leads to permanently
porous materials that are able to reversibly entrap vapors and
gases. The ability to play with two hierarchical levels of
supramolecular organizationthe metal−organic cyclic hex-
amers and the self-assembly of hexamers into capsules with the
aid of anionsenabled the construction of complex
architectures endowed with cavities of Platonic solid geometries
(tetrahedron and octahedron). These complexes open up new
perspectives for the use of cyclic metal−organic supramolecules
as building blocks to fabricate innovative porous materials.
(18) Carrion, C. M.; Duraì, G.; Jalon, F. A.; Manzano, B. R.;
Rodríguez, A. M. Cryst. Growth Des. 2012, 12, 1952−1969.
(19) Morin, T. J.; Merkel, A.; Lindeman, S. V.; Gardinier, J. R. Inorg.
Chem. 2010, 49, 7992−8002.
ASSOCIATED CONTENT
■
̀
(20) Bassanetti, I.; Marchio, L. Inorg. Chem. 2011, 50, 10786−10797.
S
(21) Giles, I. D.; Chifotides, H. T.; Shatruk, M.; Dunbar, K. R. Chem.
Commun. 2011, 47, 12604−12606.
* Supporting Information
Synthesis of the ligands and complexes, single crystal X-ray
structures (CCDC 871753−871757), ESI−MS spectra, 1H
NMR PGSE experimental details, powder XRD experiments,
thermal analyses, solid-state NMR, and gas absorption
measurements. This material is available free of charge via the
(22) Campos-Fernandez, C. S.; Schottel, B. L.; Chifotides, H. T.;
Bera, J. K.; Bacsa, J.; Koomen, J. M.; Russell, D. H.; Dunbar, K. R. J.
Am. Chem. Soc. 2005, 127, 12909−12923.
(23) Halper, S. R.; Do, L.; Stork, J. R.; Cohen, S. M. J. Am. Chem. Soc.
2006, 128, 15255−15268.
(24) Gennari, M.; Bassanetti, I.; Marchio,
361−371.
̀
L. Polyhedron 2010, 29,
(25) Macchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D.
Chem. Soc. Rev. 2008, 37, 479−489.
AUTHOR INFORMATION
■
Corresponding Author
(26) Plevert, J.; Gentz, T. M.; Laine, A.; Li, H. L.; Young, V. G.;
Yaghi, O. M.; O’Keeffe, M. J. Am. Chem. Soc. 2001, 123, 12706−12707.
(27) Uemura, K.; Kitagawa, S.; Kondo, M.; Fukui, K.; Kitaura, R.;
Chang, H. C.; Mizutani, T. Chem.Eur. J. 2002, 8, 3586−3600.
(28) Uemura, K.; Kitagawa, S.; Fukui, K.; Saito, K. J. Am. Chem. Soc.
2004, 126, 3817−3828.
Present Address
‡Universite
́
Joseph Fourier Grenoble 1/CNRS, Dep
́
artement
de Chimie Moleculaire, UMR-5250, 38041 Grenoble Cedex 9
France.
́
(29) Carlucci, L.; Ciani, G.; Moret, M.; Proserpio, D. M.; Rizzato, S.
Angew. Chem., Int. Ed. 2000, 39, 1506−1510.
(30) Liu, J.; Thallapally, P. K.; McGrail, B. P.; Brown, D. R.; Liu, J.
Chem. Soc. Rev. 2012, 41, 2308−2322.
Notes
The authors declare no competing financial interest.
(31) Liu, B.; Smit, B. Langmuir 2009, 25, 5918−5926.
(32) Huang, H. L.; Zhang, W. J.; Liu, D. H.; Liu, B.; Chen, G. J.;
Zhong, C. L. Chem. Eng. Sci. 2011, 66, 6297−6305.
(33) Comotti, A.; Bracco, S.; Distefano, G.; Sozzani, P. Chem.
Commun. 2009, 284−286.
ACKNOWLEDGMENTS
■
This work was supported by the Universita
̀
degli Studi di
Parma. Cariplo Foundation and Regione Lombardia are
acknowledged for financial support. The authors thank M.
Beretta for adsorption measurements and S. Bracco and A.
Cattaneo for solid-state NMR characterization.
9145
dx.doi.org/10.1021/ja303940d | J. Am. Chem. Soc. 2012, 134, 9142−9145