T.J. Brown, R.A. Widenhoefer / Journal of Organometallic Chemistry 696 (2011) 1216e1220
1219
All remaining gold(I)
employing similar procedures unless noted otherwise.
p
-alkyne complexes were synthesized
86.9, 83.5, 28.7, 24.5, 23.9, 6.6. MALDI-MS calcd (found) for
[C36H44N2Au]þ (Mþ): 701.3 (700.9).
2-MeChCCH2CH2CH3]}þ SbF6 (1b)
7.95e7.90 (m, 1 H), 7.70e7.60 (m,
4.2.8. {(IPr)Au(
h
2-MeChCMe)}þ SbF6 (2c)
ꢁ
ꢁ
4.2.2. {[P(t-Bu)2o-bipheny]Au[
h
White solid, 96%. 1H NMR:
d
An NMR tube containing a suspension of (IPr)AuCl (35 mg,
0.066 mmol), AgSbF6 (22.7 mg, 0.066 mmol), 2-butyne (3.6 mg,
0.066 mmol), and toluene (1.2 mg, internal standard) in CD2Cl2
(0.5 mL) was shaken briefly and allowed to stand at room
temperature. Following precipitation of AgCl, the sample was
analyzed by 1H and 13C NMR spectroscopy at 25 ꢂC, which revealed
2 H), 7.58e7.52 (m, 1 H), 7.49 (t, J ¼ 7.5 Hz, 2 H), 7.36e7.30 (m, 1 H),
7.23 (d, J ¼ 7.0 Hz, 2 H), 2.37 (qt, J ¼ 2.5, 7.0 Hz, 2 H), 2.16 (t,
J ¼ 2.0 Hz, 3 H), 1.61 (sextet, J ¼ 7.5 Hz, 2 H), 1.45 (d, J ¼ 16.5 Hz,
18 H), 1.00 (t, J ¼ 7.5 Hz, 3 H). 13C{1H} NMR:
149.8 (d, J ¼ 12.8 Hz),
d
143.1 (d, J ¼ 6.7 Hz), 133.8, 133.3 (d, J ¼ 7.7 Hz), 131.8, 129.6, 128.7,
128.3, 128.0 (d, J ¼ 7.7 Hz), 123.4 (d, J ¼ 48.0 Hz), 88.7 (d, J ¼ 7.7 Hz),
86.3 (d, J ¼ 6.7 Hz), 38.5 (d, J ¼ 25.1 Hz), 30.8 (d, J ¼ 6.8 Hz), 24.0,
formation of 2c in 97 ꢃ 5% yield. 1H NMR (300 MHz):
d 7.60
(t, J ¼ 8.1 Hz, 2H), 7.48 (s, 2H), 7.39 (d, J ¼ 7.8 Hz, 4H), 2.51 (septet,
22.4, 13.2, 7.2. 31P{1H} NMR:
C26H37PF6AuSb: H, 4.59 (4.36); C, 38.40 (38.35).
d 65.3. Anal. calcd (found) for
J ¼ 6.9 Hz, 4H), 1.88 (s, 6H), 1.29 (d, J ¼ 6.9 Hz, 12H), 1.27 (d,
J ¼ 6.9 Hz, 12H). 13C{1H} NMR:
d 177.1, 146.1, 133.3, 131.8, 125.2,
124.9, 81.5, 29.2, 24.8, 24.1, 6.1.
4.2.3. {[P(t-Bu)2o-bipheny]Au[
h
2-MeChCC(CH3)3]}þ SbF6 (1c)
7.96e7.90 (m, 1 H), 7.70e7.60 (m,
ꢁ
White solid, 90%. 1H NMR:
d
4.3. Determination of alkyne binding constants
2 H), 7.59e7.52 (m, 1 H), 7.49 (t, J ¼ 7.5 Hz, 2 H), 7.35e7.28 (m, 1 H),
7.22 (d, J ¼ 7.5 Hz, 2 H), 2.19 (s, 3 H),1.47 (d, J ¼ 16.5 Hz,18 H), 1.27 (s,
4.3.1. Reaction of 2-butyne with {[P(t-Bu)2o-bipheny]Au(NCArF)}þ
SbF6 (3a)
9 H). 13C{1H} NMR:
d
149.2 (d, J ¼ 12.6 Hz), 143.4 (d, J ¼ 6.8 Hz),
ꢁ
134.2, 133.9 (d, J ¼ 7.7 Hz), 132.2, 130.0, 129.4, 128.5, 128.3 (d,
J ¼ 7.7 Hz), 123.5 (d, J ¼ 47.9 Hz), 98.3, 87.0, 39.2 (d, J ¼ 24.9 Hz),
2-Butyne (1.03 mg, 0.019 mmol) was added via gas tight syringe
to an NMR tube sealed with a rubber septum that contained a CD2Cl2
solution of 3a (20 mg, 0.021 mmol) at ꢁ 60 ꢂC. The tube was shaken,
placed in the probe of an NMR spectrometer cooled at ꢁ 60 ꢂC and
allowed to equilibrate for 10 min. The relative concentrations of 3a,
1d, NCArF, and 2-butyne were determined by integrating the reso-
31.9, 31.2 (d, J ¼ 5.8 Hz), 8.4. 31P{1H} NMR:
d 65.9. Anal. calcd
(found) for C27H39PF6AuSb: H, 4.75 (4.66); C, 39.20 (39.14).
ꢁ
4.2.4. {[P(t-Bu)2o-bipheny]Au[
h
2-MeChCMe]}þ SbF6 (1d)
White solid, 91%. 1H NMR:
d
8.00e7.84 (m, 1 H), 7.72e7.44 (m,
nances corresponding to the aromatic protons of bound [
(2:1)] and free [ 8.15, 8.14 (2:1)] NCArF and the resonances corre-
sponding to the methyl protons of bound ( 2.06) and free ( 1.70) 2-
d 8.41, 8.38
5 H), 7.38e7.30 (m, 1 H), 7.30e7.16 (m, 2 H), 2.11 (s, 6 H), 1.44 (d,
d
J ¼ 16.5 Hz, 18 H). 13C{1H} NMR:
d
149.1 (d, J ¼ 13.0 Hz), 143.5
d
d
(d, J ¼ 7.0 Hz), 134.0, 133.6 (d, J ¼ 6.9 Hz), 132.1, 129.9, 128.9, 128.7,
128.3 (d, J ¼ 7.8 Hz), 123.8 (d, J ¼ 48.6 Hz), 84.9, 39.7 (d, J ¼ 24.6 Hz),
butyne. An equilibrium constant of Keq ¼ [1d][NCArF]/[3a][2-
butyne] ¼ 25 ꢃ 2 was determined (Table 2).
31.2 (d, J ¼ 6.2 Hz), 7.4. 31P{1H} NMR:
d
65.2. Anal. calcd (found) for
To ensure that equilibrium was achieved under these conditions,
the following control experiment was performed. NCArF (4.9 mg,
0.02 mmol) was added via syringe to an NMR tube that contained
a CD2Cl2 solution of 2-butyne complex 1d (16 mg, 0.02 mmol) at
ꢁ 60 ꢂC. The tube was shaken, placed in the probe of an NMR
spectrometer cooled at ꢁ 60 ꢂC and allowed to equilibrate for
10 min. The relative concentrations of 3a, 1d, NCArF, and 2-butyne
were determined as was described in the preceding paragraph. The
equilibrium constant determined from this experiment {Keq ¼ [1d]
[NCArF]/[3a][2-butyne] ¼ 24 ꢃ 1} was not significantly different
from that obtained from treatment of 3a with 2-butyne.
C24H33PF6AuSb: H, 4.24 (4.23); C, 36.71 (36.62).
4.2.5. {[P(t-Bu)2o-bipheny]Au[h
2-PhChCMe]}þ SbF6 (1e)
ꢁ
An NMR tube containing a suspension of [P(t-Bu)2o-bipheny]
AuCl (30 mg, 0.057 mmol), AgSbF6 (19.4 mg, 0.057 mmol), 2-
butyne (6.6 mg, 0.057 mmol), and 1,3-dimethoxybenzene
(1.4 mg, internal standard) in CD2Cl2 (0.5 mL) was shaken briefly
and allowed to stand at room temperature. Following precipita-
tion of AgCl, the sample was analyzed by 1H and 13C NMR
spectroscopy at 25 ꢂC, which revealed formation of 1e in 92 ꢃ 5%
yield. 1H NMR:
d
7.93e7.81 (m, 1H), 7.70e7.50 (m, 4H), 7.46 (t,
Similar procedures were employed to determine the equilib-
rium constants for the displacement of NCArF from 3a with
2-hexyne, 4,4-dimethyl-2-pentyne, and 1-phenylpropyne and for
displacement of NCArF from 3b with 2-butyne and 1-phenyl-
propyne. Error limits refer to the standard deviation in Keq deter-
mined from three independent experiments.
J ¼ 7.5 Hz, 2H), 7.43e7.32 (m, 4H), 7.32e7.24 (m, 1H), 7.16 (d,
J ¼ 7.0 Hz, 2H), 2.35 (s, 3H), 1.34 (d, J ¼ 16.5 Hz, 18H), 1.00. 13C{1H}
NMR:
d
147.9 (d, J ¼ 12.5 Hz), 142.9 (d, J ¼ 6.7 Hz), 133.4, 132.7 (d,
J ¼ 7.2 Hz), 132.1, 131.4, 131.1, 129.2, 129.0, 128.2, 127.8 (d,
J ¼ 7.7 Hz), 127.1, 122.6 (d, J ¼ 49.6 Hz), 117.9, 90.6 (d, J ¼ 8.6 Hz),
86.0 (d, J ¼ 7.2 Hz), 37.8 (d, J ¼ 24.9 Hz), 30.3 (d, J ¼ 5.8 Hz), 8.4.
31P{1H} NMR:
d
65.7.
4.3.2. Reaction of 3-hexyne with {[P(t-Bu)2o-biphenyl]Au[
h
2-Me(H)
C¼CMe2]}þ SbF6 (4a)
ꢁ
4.2.6. {(IPr)Au(
h
2-EtChCEt)}þ SbF6 (2a)
3-Hexyne (1.6 mg, 0.02 mmol) was added via gas tight syringe to
an NMR tube sealed with a rubber septum that contained a CD2Cl2
solution of 4a (16 mg, 0.02 mmol) at ꢁ 60 ꢂC. The tube was shaken,
placed in the probe of an NMR spectrometer cooled at ꢁ 60 ꢂC and
allowed to equilibrate for 10 min. The relative concentrations of 4a,
1a, 2-methyl-2-butene, and 3-hexyne were determined by inte-
grating the resonances corresponding to the olefinic proton of
ꢁ
White solid, 94%. 1H NMR (400 MHz, CDCl3):
d
7.52 (t, J ¼ 8 Hz,
2H), 7.49 (s, 2 H), 7.30 (d, J ¼ 7.6 Hz, 4H), 2.48 (sept, J ¼ 7.2 Hz, 4H),
2.20 (q, J ¼ 7.6 Hz, 4H), 1.23 (d, J ¼ 6.8 Hz, 24H), 0.57 (t, J ¼ 7.6 Hz,
6H). 13C{1H} NMR (CDCl3):
d 177.2, 145.7, 133.0, 131.4, 125.1, 124.5,
87.2, 28.8, 24.6, 23.9, 14.7, 13.1. Anal. calcd (found) for
C33H46AuF6N2Sb: H, 5.13 (5.05); C, 43.87 (43.76); N, 3.10 (3.37).
bound (
nances corresponding to the methylene protons of bound (
and free (
methyl-2-butene]/[4a][3-hexyne] ¼ 2.9 ꢃ 0.2 was determined
(Scheme 1). Multiplication of this result by the equilibrium
constant for displxacement of NCArF from 3a with 2-methyl-2-
butene (Keq ¼ 156 ꢃ 8) [10] provided an equilibrium constant for
d
3.99) and free (
d
5.12) 2-methyl-2-butene and the reso-
2-PhChCMe)}þ SbF6 (2b)
d
2.40)
ꢁ
4.2.7. {(IPr)Au(
h
Pale green solid, 99%. 1H NMR (CDCl3):
d
7.58 (t, J ¼ 8 Hz, 2H),
d
2.10) 3-hexyne. An equilibrium constant of Keq ¼ [1a][2-
7.51 (s, 2 H), 7.36 (d, J ¼ 8.0 Hz, 1H), 7.31 (d, J ¼ 8 Hz, 4H), 7.15 (t,
J ¼ 7.5 Hz, 2H), 6.81 (d, J ¼ 7.5 Hz, 2H), 2.45 (sept, J ¼ 7 Hz, 4 H), 2.05
(s, 3 H), 1.22 (d, J ¼ 7 Hz, 12 H), 1.14 (d, J ¼ 7 Hz, 12 H). 13C{1H} NMR
(CDCl3):
d 175.7, 145.8, 132.9, 131.8, 131.4, 129.1, 125.1, 124.5, 117.1,