A R T I C L E S
Harman et al.
achieved. Indeed, despite the enormous effort aimed at generat-
ing single-molecule magnets with high relaxation barriers, to
date, no molecule has shown magnetic hysteresis above 10 K.
The vast majority of single-molecule magnets characterized
thus far have taken the form of multinuclear transition metal
cluster compounds.1-5 Recently, however, researchers have
uncovered slow magnetic relaxation in mononuclear lanthanide
and actinide complexes.16-20 In these complexes, the large spin-
orbit coupling of the f-block ion gives rise to a highly anisotropic
ground state. In particular, this discovery has led to mononuclear
lanthanide phthalocyanine complexes with very high relaxation
barriers. In principle, similar behavior should be attainable in a
mononuclear transition metal complex with a high-spin ground
state and uniaxial anisotropy. However, unlike their f-block
counterparts that display significant spin-orbit coupling largely
independent of ligand field effects, the orbital moment of
transition metal coordination compounds is frequently quenched
by geometric distortions.21-25 Furthermore, in the absence of
steric protection, transition metal ions often undergo coordinative
saturation to form low-spin complexes. Thus, the task of creating
mononuclear transition metal-based single-molecule magnets
requires enforcing coordination geometries that preserve a high-
spin ground state while minimizing or preventing anisotropy-
quenching structural distortions.
ment of single-molecule magnets are low-coordinate high-spin
iron(II) complexes, some of which have been reported to show
axial zero-field splitting magnitudes up to |D| ) 50 cm-1,38-43 as
in the case of the planar complex (ꢀ-diketiminate)FeCH3.38 In view
of these principles and the wealth of inorganic coordination
chemistry carried out by iron in heme and nonheme protein active
sites44 and their synthetic models,45-50 many laboratories, including
ours, have been interested in exploring the structure, magnetism,
and reactivity of iron complexes in lower-coordinate two-51-55 and
three-fold32,33,43,56-68 environments. In this context, we have
(31) Jenkins, D. M.; Di Bilio, A. J.; Allen, M. J.; Betley, T. A.; Peters,
J. C. J. Am. Chem. Soc. 2002, 124, 15336.
(32) England, J.; Martinho, M.; Farquhar, E. R.; Frisch, J. R.; Bominaar,
E. L.; Mu¨nck, E.; Que, L. Angew. Chem., Int. Ed. 2009, 48, 3622.
(33) Brown, S. D.; Peters, J. C. J. Am. Chem. Soc. 2005, 127, 1913.
(34) Diaconescu, P. L.; Arnold, P. L.; Baker, T. A.; Mindiola, D. J.;
Cummins, C. C. J. Am. Chem. Soc. 2000, 122, 6108.
(35) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2001, 123, 4623.
(36) Melenkivitz, R.; Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc.
2002, 124, 3846.
(37) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124, 9976.
(38) Andres, H.; Bominaar, E. L.; Smith, J. M.; Eckert, N. A.; Holland,
P. L.; Münck, E. J. Am. Chem. Soc. 2002, 124, 3012.
(39) Boca, R. Coord. Chem. ReV. 2004, 248, 757.
(40) Merrill, W. A.; Stich, T. A.; Brynda, M.; Yeagle, G. J.; Fettinger,
J. C.; De Hont, R.; Reiff, W. M.; Schulz, C. E.; Britt, R. D.; Power,
P. P. J. Am. Chem. Soc. 2009, 131, 12693.
This task is ideally suited to molecular inorganic chemistry and
its focus on the design and synthesis of geometrically constrained
and sterically bulky ligands. Indeed, many metal complexes
developed within this paradigm display novel or enhanced mo-
lecular reactivity,26-30 as well as atypical spin states31 and bonding
configurations.33,32-37 Of particular promise toward the develop-
(41) Reiff, W. M.; Schulz, C. E.; Whangbo, M.-H.; Seo, J. I.; Lee, Y. S.;
Potratz, G. R.; Spicer, C. W.; Girolami, G. S. J. Am. Chem. Soc.
2008, 131, 404.
(42) Reiff, W. M.; LaPointe, A. M.; Witten, E. H. J. Am. Chem. Soc.
2004, 126, 10206.
(43) Popescu, C. V.; Mock, M. T.; Stoian, S. A.; Dougherty, W. G.; Yap,
G. P. A.; Riordan, C. G. Inorg. Chem. 2009, 48, 8317.
(44) Groves, J. T. J. Inorg. Biochem. 2006, 100, 434.
(45) Bukowski, M. R.; Koehntop, K. D.; Stubna, A.; Bominaar, E. L.;
Halfen, J. A.; Münck, E.; Nam, W.; Que, L. Science (Washington,
DC, U. S.) 2005, 310, 1000.
(12) Affronte, M.; Troiani, F.; Ghirri, A.; Candini, A.; Evangelisti, M.;
Corradini, V.; Carretta, S.; Santini, P.; Amoretti, G.; Tuna, F.; Timco,
G.; Winpenny, R. E. P. J. Phys. D Appl. Phys. 2007, 40, 2999.
(13) Manoli, M.; Johnstone, R. D. L.; Parsons, S.; Murrie, M.; Affronte,
M.; Evangelisti, M.; Brechin, E. K. Angew. Chem., Int. Ed. 2007,
46, 4456.
(14) Mannini, M.; Pineider, F.; Sainctavit, P.; Danieli, C.; Otero, E.;
Sciancalepore, C.; Talarico, A. M.; Arrio, M. A.; Cornia, A.;
Gatteschi, D.; Sessoli, R. Nat. Mater. 2009, 8, 194.
(15) Loth, S.; von Bergmann, K.; Ternes, M.; Otte, A. F.; Lutz, C. P.;
Heinrich, A. J. Nat. Phys. 2010, 6, 340.
(46) de Oliveira, F. T.; Chanda, A.; Banerjee, D.; Shan, X. P.; Mondal,
S.; Que, L.; Bominaar, E. L.; Münck, E.; Collins, T. J. Science
(Washington, DC, U. S.) 2007, 315, 835.
(47) Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Kaderli, S.; Young,
V. G.; Que, L.; Zuberbuhler, A. D.; Tolman, W. B. Science
(Washington, DC, U. S.) 1996, 271, 1397.
(48) Rohde, J. U.; In, J. H.; Lim, M. H.; Brennessel, W. W.; Bukowski,
M. R.; Stubna, A.; Mu¨nck, E.; Nam, W.; Que, L. Science (Wash-
ington, DC, U. S.) 2003, 299, 1037.
(16) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. J. Am.
Chem. Soc. 2003, 125, 8694.
(49) Grapperhaus, C. A.; Mienert, B.; Bill, E.; Weyhermu¨ller, T.;
Wieghardt, K. Inorg. Chem. 2000, 39, 5306.
(17) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. J.
Phys. Chem. B 2004, 108, 11265.
(50) Berry, J. F.; Bill, E.; Bothe, E.; George, S. D.; Mienert, B.; Neese,
F.; Wieghardt, K. Science (Washington, DC, U. S.) 2006, 312, 1937.
(51) Holland, P. L. Acc. Chem. Res. 2008, 41, 905.
(52) Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik, P. J. J. Am. Chem. Soc.
2006, 128, 5302.
(18) AlDamen, M. A.; Clemente-Juan, J. M.; Coronado, E.; Mart´ı-
Gastaldo, C.; Gaita-Ariño, A. J. Am. Chem. Soc. 2008, 130, 8874.
(19) AlDamen, M. A.; Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado,
E.; Gaita-Ariño, A.; Marti-Gastaldo, C.; Luis, F.; Montero, O. Inorg.
Chem. 2009, 48, 3467.
(53) Sazama, G. T.; Betley, T. A. Inorg. Chem. 2010, 49, 2512.
(54) King, E. R.; Betley, T. A. J. Am. Chem. Soc. 2009, 131, 14374.
(55) King, E. R.; Betley, T. A. Inorg. Chem. 2009, 48, 2361.
(56) Thomas, C. M.; Mankad, N. P.; Peters, J. C. J. Am. Chem. Soc. 2006,
128, 4956.
(20) Rinehart, J. D.; Long, J. R. J. Am. Chem. Soc. 2009, 131, 12558.
(21) Edelstein, N. M.; Lander, G. H. In The Chemistry of the Actinide
and Transactinide elements, 3rd ed.; Morss, L. R., Edelstein, N. M.,
Fuger, J., Katz, J. J., Eds.; Springer: Dordrecht, 2006; Vol. 4.
(22) Orchard, A. F. Magnetochemistry; Oxford University Press: Oxford,
2003.
(57) Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2004, 126, 6252.
(58) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003,
125, 322.
(23) Wybourne, B. G. Spectroscopic Properties of Rare Earths; Wiley:
New York, 1965.
(59) Mukherjee, J.; Lucas, R. L.; Zart, M. K.; Powell, D. R.; Day, V. W.;
Borovik, A. S. Inorg. Chem. 2008, 47, 5780.
(24) Rinehart, J. D.; Harris, T. D.; Kozimor, S. A.; Bartlett, B. M.; Long,
J. R. Inorg. Chem. 2009, 48, 3382.
(60) Larsen, P. L.; Gupta, R.; Powell, D. R.; Borovik, A. S. J. Am. Chem.
Soc. 2004, 126, 6522.
(25) Benelli, C.; Gatteschi, D. Chem. ReV. (Washington, DC, U. S.) 2002,
102, 2369.
(61) MacBeth, C. E.; Golombek, A. P.; Young, V. G.; Yang, C.; Kuczera,
K.; Hendrich, M. P.; Borovik, A. S. Science (Washington, DC, U. S.)
2000, 289, 938.
(26) Laplaza, C. E.; Cummins, C. C. Science (Washington, DC, U. S.)
1995, 268, 861.
(62) Mock, M. T.; Popescu, C. V.; Yap, G. P. A.; Dougherty, W. G.;
Riordan, C. G. Inorg. Chem. 2008, 47, 1889.
(27) Yandulov, D. V.; Schrock, R. R. Science (Washington, DC, U. S.)
2003, 301, 76.
(63) Scepaniak, J. J.; Young, J. A.; Bontchev, R. P.; Smith, J. M. Angew.
Chem., Int. Ed. 2009, 48, 3158.
(28) Castro-Rodriguez, I.; Nakai, H.; Zakharov, L. N.; Rheingold, A. L.;
Meyer, K. Science (Washington, DC, U. S.) 2004, 305, 1757.
(29) Fryzuk, M. D. Acc. Chem. Res. 2009, 42, 127.
(30) Knobloch, D. J.; Lobkovsky, E.; Chirik, P. J. Nat. Chem. 2010, 2,
30.
(64) Scepaniak, J. J.; Fulton, M. D.; Bontchev, R. P.; Duesler, E. N.; Kirk,
M. L.; Smith, J. M. J. Am. Chem. Soc. 2008, 130, 10515.
(65) Nieto, I.; Ding, F.; Bontchev, R. P.; Wang, H. B.; Smith, J. M. J. Am.
Chem. Soc. 2008, 130, 2716.
9
18116 J. AM. CHEM. SOC. VOL. 132, NO. 51, 2010