Triorganotin(IV) Pentacyanopropenides and Hexacyanoazapentadienides
volume of ca. 20 mL. The resulting yellow solution was carefully lay-
ered with n-pentane and left to stand undisturbed for a few days to
give pale yellow crystals of the product. Further purification could be
achieved by recrystallization from diethyl ether.
References
[1] a) S. J. de Mora, in: Tributyltin: Case Study of an Environmental
Contaminant (Ed.: S. J. de Mora), Cambridge University Press,
London, 1996, p. 1–20 ; b) P. E. Gibbs, G. W. Bryan, in: Tributyl-
tin: Case Study of an Environmental Contaminant (Ed.: S. J.
de Mora), Cambridge University Press, London, 1996, p. 212–
236 ; c) I. Omae, Chem. Rev. 2003, 103, 3431.
[2] a) S. J. Blunden, P. A. Cusack, R. Hill, The Industrial Uses of Tin
Chemicals, Royal Society of Chemistry, London, 1985; b) A. K.
Saxena, Appl. Organomet. Chem. 1987, 1, 39; c) A. J. Crowe,
Appl. Organomet. Chem. 1987, 1, 143; d) S. Nicklin, M. W. Rob-
son, Appl. Organomet. Chem. 1988, 2, 487.
[Me3Sn(H2O)2][C3(CN)5] (2): Yield: 0.53 g (72 %), m.p. 121 °C.
C11H13N5O2Sn (365.97): C 36.10, H 3.58, N 19.14; found: C 36.23, H
3.73, N 19.60 %. IR (KBr): ν = 2997 (m), 2206 (vs, C≡N)), 1507 (vs,
˜
C=C), 1487 (m), 1386 (m), 794 (m), 557 (s) cm–1. 1H NMR
(400.13 MHz, [D6]DMSO, 25 °C): δ = 0.54 (s, 9 H, CH3). 13C NMR
(100.62 MHz, [D6]DMSO, 25 °C): δ = 135.7 (C-3); 117.2, 113.9,
113.3 (C≡N); 57.0 (C-2,4); 0.68 (CH3).
[3] a) R. C. Poller, The Chemistry of Organotin Compounds, Aca-
demic Press, New York, 1970; b) M. Gielen, Main Group Met.
Chem. 1994, 17, 1; c) M. Gielen, Metal-Based Drugs 1995, 2,
99; d) E. Lukevics, O. Pudova, Chem. Org. Germanium Tin Lead
Compd. 2002, 2, 1685; e) S. K. Hadjikakou, N. Hadjiliadis, Co-
ord. Chem. Rev. 2009, 253, 235.
[4] a) W. N. Aldrigde, Organotin Compounds. New Chemistry and
Applications. in: Advances in Chemistry Series (Ed.: J. J. Zucker-
man), vol. 168, American Chemical Society, Washington, DC,
1976.p. 157; b) B. M. Elliot, W. N. Aldridge, J. M. Bridges, Bio-
chemistry J. 1979, 177, 461; c) A. G. Davies, P. J. Smith, Adv.
Inorg. Chem. Radiochem. 1980, 23, 1; d) A. K. Saxena, Appl.
Organomet. Chem. 1987, 1, 39; e) Z.-Q. Yang, X.-Q. Song, Q.-
L. Xie, Youji Huaxue 1996, 16, 111.
[5] a) R. G. Swisher, J. F. Vallano, V. Chandrasekhar, R. O. Day,
R. R. Holmes, Inorg. Chem. 1984, 23, 3147; b) J. F. Vallano,
R. O. Day, D. N. Rau, V. Chandrasekhar, R. R. Holmes, Inorg.
Chem. 1984, 23, 3153; c) M. Gielen, R. Willem, M. Biesemans,
M. Boualam, A. El Khloufi, D. de Vos, Appl. Organomet. Chem.
1992, 6, 287; d) E. R. T. Tiekink, Appl. Organomet. Chem. 1991,
5, 1; e) E. R. T. Tiekink, Trends Organomet. Chem. 1994, 1, 71;
f) V. Chandrasekhar, R. Boomishankar, A. Steiner, J. F. Bickley,
Organometallics 2003, 22, 3342; g) C. Ma, Y. Han, R. Zhang, D.
Wang, Eur. J. Inorg. Chem. 2005, 1649; h) V. Chandrasekhar, P.
Thilagar, T. Senapati, Eur. J. Inorg. Chem. 2007, 1004; i) M.
Moya-Cabrear, V. Jancik, R. Cea-Olivares, Tin Chem. 2008, 231;
j) I. Haiduc, E. R. T. Tiekink, J. Zuckerman-Schpector, Tin Chem.
2008, 392; k) M. Zia-ur-Rehman, S. Niaz, S. Shuja, S. Ali, I. S.
Butler, A. Meetsma, M. Khan, Polyhedron 2009, 28, 3439.
[6] a) T. L. Cairns, R. A. Carboni, D. D. Coffman, V. A. Engelhardt,
R. E. Heckert, E. L. Little, E. G. McGeer, B. C. McKusick, W. J.
Middleton, R. M. Scribner, C. W. Theobald, H. E. Winberg, J.
Am. Chem. Soc. 1958, 80, 2775; b) W. J. Middleton, E. L. Little,
D. D. Coffman, V. A. Engelhardt, J. Am. Chem. Soc. 1958, 80,
2795; c) O. W. Webster, J. Am. Chem. Soc. 1964, 86, 2898; d) Re-
view: O. W. Webster, J. Polym. Sci.: Part A: Polymer Chem.
2002, 40, 210.
[nBu3Sn(H2O)2][C3(CN)5] (3): Yield: 0.50 g (51 %), m.p. 112 °C.
C20H31N5O2Sn (492.21): C 48.80, H 6.35, N 14.23; found: C 48.28, H
5.95, N 14.11 %. IR (KBr): ν = 2208 (vs, C≡N), 1548 (vs), 1506 (vs,
˜
C=C), 1484 (m), 1417 (m), 1378 (m), 1259 (m), 535 (s) cm–1. 1H
NMR (400.13 MHz, [D6]DMSO, 25 °C): δ = 1.22 (m, 6 H, CH2), 1.29
(m, 6 H, CH2), 0.93 (m, 6 H, CH2), 0.06 (s, 9 H, CH3). 13C NMR
(100.62 MHz, [D6]DMSO, 25 °C): δ = 135.1 (C-3); 116.0, 114.3,
113.1 (C≡N); 57.2 (C-2,4); 27.9, 26.8, 17.8 (CH2); 13.6 (CH3).
[Ph3Sn(H2O)2][C3(CN)5] (4): Yield: 0.83 g (75 %), m.p. 127 °C.
C26H19N5O2Sn (552.18): C 56.56, H 3.47, N 12.68; found: C 55.65, H
3.38, N 12.82 %. IR (KBr): ν = 3068 (m), 2208 (vs, C≡N), 1578 (m),
˜
1503 (vs, C=C), 1430 (s), 1385 (m), 1195 (m), 1076 (m), 997 (w), 731
(s), 669 (s) cm–1. 1H NMR (400.13 MHz, [D6]DMSO, 25 °C): δ =
7.81, 7.79, 7.55 (m, Ph). 13C NMR (100.62 MHz, [D6]DMSO, 25 °C):
δ = 135.9 (C-3); 134.0, 133.1, 130.2, 129.2 (Ph); 116.4, 114.0, 112.9
(C≡N); 57.1 (C-2,4).
Preparation of [Ph3Sn(H2O)2][N{C(CN)C(CN)2}2] (6)
Solid Ph3SnCl (0.39 g, 1.0 mmol) was added in one portion to a stirred
suspension of Ag[N{C(CN)C(CN)2}2] (5, 0.33 g, 1.0 mmol) in THF
(20 mL) and the reaction mixture was stirred at room temp. for 24 h.
After removal of the solvent in vacuo, the residue was extracted with
diethyl ether (30 mL). Insoluble material was filtered off, and the fil-
trate was again evaporated to dryness. The crude product was redis-
solved in a THF/toluene mixture (1:2, 20 mL) and carefully layered
with n-pentane to produce dark red crystals of 6 after standing undis-
turbed for
a few days. Yield: 0.83 g (55 %), m.p. 127 °C.
C28H19N7O2Sn (604.21): C 55.66, H 3.17, N 16.23; found: C 54.97, H
2.95, N 15.82 %. IR (KBr): ν = 3060 (m), 2205 (vs, CN), 1588 (m),
˜
1500 (vs, C=C), 1428 (s), 1411 (s), 1383 (m), 1188 (m), 1067 (m),
1
1002 (w), 735 (s), 658 (s) cm–1. H NMR (400.13 MHz, [D6]DMSO,
25 °C): δ = 7.48, 7.25 (m, Ph). 13C NMR (100.62 MHz, [D6]DMSO,
25 °C): δ = 135.7 (C(CN)); 133.2, 130.7, 129.3, 128.8 (Ph); 57.1
(C(CN)2).
[7] a) L. Jäger, C. Tretner, K. Sünkel, J. Košížek, Z. Anorg. Allg.
Chem. 1998, 624, 1381; b) E. Lefebvre, F. Conan, N. Cosquer, J.-
M. Kerbaol, M. Marchivie, J. S. Pala, M. M. Kubicki, E. Vigier,
C. J. G. Garcia, New J. Chem. 2006, 30, 1197
[8] a) G. Gilli, V. Bertolasi, P. Gilli, V. Ferretti, Acta Crystallogr.,
Sect. B 2001, 57, 859; b) Y. Liu, A. H. W. Lam, F. W. Fowler,
J. W. Lauher, Mol. Cryst. Liquid. Cryst. Sci. Technol. A 2002,
389, 39; c) C. Borel, K. Larsson, M. Håkansson, B. E. Olsson,
A. D. Bond, L. Öhrström, Crystal Groth Des. 2009, 9, 2821;
d) V. E. de Oliveira, R. Diniz, L. F. C. de Oliveira, Quimica
Nova 2009, 32, 1917.
Crystallographic data for the crystal structure reported in this paper
can be obtained from the Cambridge Crystallographic Data Center, 12
Union Road, Cambridge CB21EZ, UK (Fax: +44-1223-336-033; E-
ferring to the CIF deposition code CCDC-233441.
Supporting Information (see footnote on the first page of this article):
ORTEP drawings and X-ray structural data as well as complete CIF
file for 4.
[9] a) D. Braga, F. Grepioni, Coord. Chem. Rev. 1999, 183, 19; b) D.
Braga, G. R. Desiraju, J. S. Miller, S. G. Orpen, S. L. Proce,
CrystEngComm 2002, 4, 500; c) G. R. Desiraju, J. Ind. Chem.
Soc. 2003, 80, 151; d) D. Braga, Chem. Commun. 2003, 2751;
e) L. Brammer, Chem. Soc. Rev. 2004, 33, 476; f) K. Biradha,
CrystEngComm 2003, 5, 374; g) G. R. Desiraju, Angew. Chem.
Int. Ed. 2007, 46, 8342; h) C. B. Aakeroy, N. R. Champness, C.
Janiak, CrystEngComm 2010, 12, 22.
Acknowledgement
F. O. thanks the Government of Sachsen-Anhalt for a Habilitation
scholarship (Graduiertenförderung). Financial support by the Otto-von-
Guericke-Universität Magdeburg is also gratefully acknowledged.
[10] L. Jäger, C. Wagner, W. Hanke, J. Mol. Struct. 2000, 525, 107.
Z. Anorg. Allg. Chem. 2011, 190–194
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
193