5-Carboxymethyl-2-(4-methylthiophenyl)-1,3,2-dioxaborolan-4-one
to obtain 3e. Yield: 2.7 g (92%). 1H-NMR (THF-d8, 400 MHz) δ
7.66 (d, 2H, J = 4.4 Hz), 7.20 (d, 2H), 4.82 (dd, 1HX, J = 4.4 Hz,
J = 4.8 Hz), 2.90 (dd, 1HA, J2 = 11.2 Hz, J3 = 4.4 Hz), 2.83 (dd,
1HB, J2 = 11.2 Hz, J3 = 4.8 Hz), 2.41 (s, 3H). 13C-NMR (THF-d8,
100 MHz) δ 176.30 (COOH), 171.29 (C O), 146.57 (CAr –S), 136.25
(CAr), 125.91 (CAr), 74.12 (C–H), 36.64 (CH2), 14.81 (CH3). 11B-NMR
(THF-d8, 64 MHz) δ 32. MS, EI–HR: calcd for C11H11O5BS 266.04203.
Found: 266.04311. Elemental analysis: calcd for C11H11O5BS: C,
49.65; H,4.17. Found: C, 49.96; H,4.21.
solved using direct methods, and refined with the full-matrix least-
squares technique using the SHELXS97 and SHELXL97 programs,
respectively. C11H11O5BS*C4H8O, FW = 338.17, monoclinic, space
group P21/c, Dcalcd = 1.399 g cm−3, Z = 4, a = 12.6498(3) Å,
b = 5.43210(13) Å, c = 23.5827(5) Å, α = 90.00◦, β = 97.667(2)◦,
γ = 90.00◦, V = 1606.00(7) Å3, T = 100(2) K, Gemini A Ultra
Diffractometer, λ (Cu/Kα) = 1.5418 Å, µ = 2.041 mm−1. Of 10 319
reflectionsmeasured,1993wereunique(Rint = 0.045).Refinement
on F2 concluded with the values R1 = 0.0490 and wR2 = 0.0892
for 226 parameters and 2502 data with I > 2δI.
Synthesis of 3e*DMSO-d6
Acknowledgments
3e (0.021 g) was dissolved in DMSO-d6 (0.6 ml) to form the clear
solution. 1H-NMR (DMSO-d6, 400 MHz) δ 7.31 (d, 2H, J = 6.4 Hz),
7.11 (d, 2H), 4.50 (dd, 1HX, J3 = 4.0 Hz, J3 = 4.4 Hz), 2.67 (dd,
1HA, J2 = 15.2 Hz, J3 = 4.0 Hz), 2.45 (dd, 1HB, J2 = 15.2 Hz,
J3 = 4.4 Hz), 2.41 (s, 3H). 13C-NMR (DMSO-d6, 100 MHz) δ 177.68
(COOH), 171.90 (C O), 140 (C–B, br), 136.36 (CAr –S), 132.27 (CAr),
125.17 (CAr), 71.87 (CH), 39.01 (CH2), 15.01 (CH3). 11B-NMR (DMSO-
d6, 64 MHz) δ 11. Elemental analysis: calcd for C13H11D6O6BS2: C,
44.58; H,6.62. Found: C, 44.76; H,6.69.
This work was supported by the Warsaw University of Technol-
ogy. The X-ray measurements were undertaken in the Inorganic
Chemistry Laboratory, Chemistry Department, Warsaw University
of Technology. Support from Aldrich Chemical Company, Milwau-
kee, WI, USA, through the donation of chemicals and equipment
is gratefully acknowledged.
References
Example Procedure for the Reduction of Ketones
[1] Q. Gao, K. Ishihara, T. Maruyama, M. Mouri, H. Yamamoto,
Tetrahedron, 1994, 50, 979.
[2] Q. Gao, T. Maruyama, M. Mouri, H. Yamamoto, J. Org. Chem. 1992,
57, 1951.
[3] K. Furuta, S. Shimizu, Y. Miwa, H. Yamamoto, J. Org. Chem. 1989, 54,
1483.
[4] K. Ishihara, Q. Gao, H. Yamamoto, J. Org. Chem. 1993, 58, 6917.
[5] K. Ishihara, S. Kondo, H. Kurihara, H. Yamamoto, J. Org. Chem. 1997,
62, 3026.
[6] K. Furuta, M. Mouri, H. Yamamoto, Synlett 1991, 561.
[7] K. Ishihara, M. Mouri, Q. Gao, T. Maruyama, K. Furuta, H. Yamamoto,
J. Am. Chem. Soc. 1993, 115, 11490.
[8] K. Furuta, T. Maruyama, H. Yamamoto, Synlett 1991, 439.
[9] K. Ishihara, T. Maruyama, M. Mouri, Q. Gao, K. Furuta, H. Yamamoto,
Bull. Chem. Soc. Jpn., 1993, 66, 3483.
[10] T. Kumagai, S. Itsuno, Macromolecules 2000, 4995.
[11] K. Ishihara,Q. Gao,H. Yamamoto,J.Am.Chem.Soc.1993,115,10412.
[12] E. J. Corey, J. J. Rohde, Tetrahedron Lett. 1997, 38, 37.
[13] D. B. Cordes, T. M. Nguyen, T. J. Kwong, J. T. Suri, R. T. Luibrand,
B. Singaram, Eur. J. Org. Chem. 2005, 5289.
[14] J. Kim, B. Singaram, Tetrahedron Lett. 2006, 47, 3901.
[15] C. Zheng, B. F. Spielvogel, R. Y. Smith, N. S. Hosmane, Z. Kristallogr.
New Cryst. Struct. 2001, 216, 341.
3e obtained from L-(−)-malic acid (1.01 g, 0.003 mol) and
4-fluoroacetophenone (0.41 g, 0.003 mol) was placed in the
Schlenk flask and THF (30 ml) was added maintaining the stirring.
NaBH4 (0.11 g, 0.003 mol) was added to the obtained solution
causing the rapid gas evolution. After 1 h the reaction mixture
was poured onto water (50 ml) and extracted with hexane (30 ml).
The organic phase was dried with MgSO4 and evaporated to give
4-fluoro-α-methylbenzyl alcohol. 1H-NMR (CDCl3, 400 MHz) δ 7.23
(m, 2H), 6.93 (m, 2H), 4.77 (q, 1H), 2.06 (br, 1H), 1.36 (d, 3H). 13C-NMR
(CDCl3, 100 MHz) δ 161.3 (d, JC1 –F = 253 Hz), 136.5, 128.1, 115.7,
75.7, 22.6. Elemental analysis: calcd for C8H9OF: C, 68.56; H,6.47.
Found: C, 69.01; H,6.56.
Determination of Enantiomeric Excess
Equimolaramounts(100 µmol)of4-fluoro-α-methylbenzylalcohol
and S(+)-α-methoxy-α-trifluoromethyl-phenylacetic acid chloride
were placed into vial and dissolved in 0.2 ml of hexane. The excess
of K2CO3 was added and the obtained mixture was kept at 50 ◦C
for 1 h. The sample of the reaction mixture was next examined by
GC [COL-ELITE-5 MS column, tR = 7.8 min for (R)-enantiomer].
[16] C. B. Aakeroy,J. Desper,B. Levin,D. J. Salmon,Trans.Am.Cryst.Assoc.
2004, 39, 123.
[17] A. S. Batsanov, T. B. Marder, G. Brahman, N. C. Norman, Acta Cryst. E.
2006, 62, 972.
[18] T. Klis,J. Serwatowski,G. Wesela-Bauman,M. Zadrozna,Tetrahedron
Crystal Data for 3e
Lett. 2010, 51, 1685.
[19] Z. Yuan, C. D. Entwistle, J. C. Collings, D. Albesa-Jove, A. S. Batsanov,
J. A. K. Howard, N. J. Taylor, H. M. Kaiser, D. E. Kaufman, Suk-
Yue. Poon, Wai-Yeung. Wong, C. Jardin, S. Fathallah, A. Boucekkine,
J. F. Halet, T. B. Marder, Chem. Eur. J. 2006, 12, 2758.
[20] T. Agou, J. Kobayashi, T. Kawashima, Chem. Eur. J. 2007, 13, 8051.
[21] S. Sole, F. P. Gabbai, Chem. Comm. 2004, 1284.
Single crystal data were collected on a Gemini A Ultra Diffrac-
tometer (Oxford Diffraction Ltd). The CrysAlisPro program was
used for data collection, cell refinement, data reduction and the
empirical absorption corrections using spherical harmonics, im-
plemented in multi-scan scaling algorithm. The structure was
c
Appl. Organometal. Chem. 2011, 25, 294–297
Copyright ꢀ 2011 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc