366
J Incl Phenom Macrocycl Chem (2010) 67:361–367
265 °C; IR (KBr)/cm-1: 3057, 2905, 2779, 1583, 1438,
1412, 1262, 1210, 1006, 968, 952, 890, 785 and 732; H-
8. Sarkar, B.: Transport of copper. Met. Ions Biol. Syst. 12, 233–281
(1981)
1
9. Fuller, C.W.: Electrochemical Atomization for Atomic Absorp-
tion Spectroscopy. Royal Society of Chemistry, London (1977)
10. Fassel, V.A., Kniseley, R.N.: Inductively coupled plasma-optical
emission analytical spectrometry. Anal. Chem. 46, 75–80 (1974)
11. Herzog, G.D.W.M.: Application of disorganized monolayer films
on gold electrodes to the prevention of surfactant inhibition of the
voltammetric detection of trace metals via anodic stripping of
under potential deposits: detection of copper Arrigan. Anal.
Chem. 75, 319–323 (2003)
NMR (CDCl3) d: 8.3 (s, 1H, Ar–H), 8.06–7.3 (m, 13H, Ar–
H), 4.88 (s, 2H, Ar–CH2–N–), 4.16 (s, 2H, Ar–CH2–N–).
13C-NMR (DMSO-d6) 40.77, 41.73, 51.13, 123.55, 124.67,
125.88, 127.35, 129.15, 129.47, 129.56, 130.16, 131.06,
131.10, 131.26, 132.37. Anal. Calcd for C22H19N: C, 88.88;
H, 6.39; N, 4.71. Found: C, 89.06; H, 6.42; N, 4.83%.
12. Zen, J.M., Wang, H.F., Kumar, A.S., Yang, H.H., Dharuman, V.:
Preconcentration and electroanalysis of copper(II) in ammoniacal
medium on nontronite/cellulose acetate modified electrodes.
Electroanalysis 14, 99–105 (2002)
13. Valeur, B.: Molecular Fluorescence. Wiley-VCH, Weinheim
(2002)
14. Amendola, V., Fabbrizzi, I., Forti, F., Pallavicini, P., Poggi, A.,
Sacchi, D., Tagleitti, A.: Light-emitting molecular devices based
on transition metals. Coord. Chem. Rev. 250, 273–299 (2006)
15. Wolfbeis, O.S., Bohmer, M., Durkop, A., Enderlein, L., Gruber,
M., Klimant, I., Krause, C., Kurner, J., Liebsch, G., Lin, Z.,
Oswald, B., Kraayenhof, R., Visser, A.J.W.G., Gerritsen, H.C.,
Wu, M.: Fluorescence Spectroscopy, Imaging and Probes: New
Tools in Chemical Physical and Life Sciences. Springer, Berlin
(2002)
16. De Silva, A. P., De Silva, S. A.: Fluorescent signalling crown
ethers; switching on–off fluorescence by alkali metal ion recog-
nition and binding in situ. J. Chem. Soc. Chem. Commun. 1709–
1710 (1986)
17. Kramer, R.: Fluorescent chemosensors for Cu2? ions: fast,
selective, and highly sensitive. Angew. Chem. Int. Ed. 37, 772–
773 (1998)
18. Roy, B.C., Chandra, B., Hromas, D., Mallik, S.: Synthesis of new,
pyrene-containing, metal-chelating lipids and sensing of cupric
ions. Org. Lett. 5, 11–14 (2003)
19. Zheng, Y., Orbulescu, J., Ji, X., Andreopoulos, F.M., Pham, S.M.,
Leblanc, R.M.: Development of fluorescent film sensors for the
detection of divalent copper. J. Am. Chem. Soc. 125, 2680–2686
(2003)
Synthesis of chemosensor, Anthrox
N-benzyl aminomethyl anthracene 3 (445 mg, 1.5 mmol),
chloromethyl oxadiazole derivative 2 (376 mg, 1.5 mmol),
K2CO3 (150 mg) and KI (250 mg) were refluxed in dry
acetone for 48 h. After cooling to room temperature, the
reaction mixture was filtered to remove insoluble inorganic
salts and the filtrate was concentrated. The crude solid
product was subjected to purification by SiO2 column
chromatography using CHCl3: methanol (98:2) as eluant.
The target product, Anthrox was obtained as a yellow solid
in 58% yield (446 g), mp 174–176 °C; IR (KBr)/cm-1
:
3050, 2958, 1615, 1583, 1559, 1496, 1445, 1366, 1252,
1208, 1110, 1011, 957, 889, 857, 730; 1H-NMR (CDCl3) d:
8.45 (m, 3H, Ar–H), 8.0 (d, 2H, 5.7 Hz, Ar–H), 7.92 (d,
2H, 6.3 Hz, Ar–H), 7.54 (d, 2H, J = 6.3 Hz, Ar–H), 7.46
(m, 4H, Ar–H), 7.30 (m, 5H, Ar–H), 4.88 (s, 2H), 3.99 (s,
2H), 3.92 (s, 2H), 1.38 (s, 9H, Ar–C(CH3)3). Anal. Calcd
for C35H33N3O: C, 82.19; H, 6.45; N, 8.21. Found: C,
82.25; H, 6.55; N, 8.24%. 13C-NMR (DMSO-d6) 31.27,
35.27, 46.71, 50.12, 57.01, 121.16, 125.25, 125.50, 126.34,
126.68, 126.74, 127.58, 128.13, 128.60, 129.14, 129.33,
129.67, 131.35, 131.40, 138.81, 155.28, 164.22, 164.52.
20. Wu, Q., Anslyn, E.V.: Catalytic signal amplification using a heck
reaction. An example in the fluorescence sensing of Cu(II).
J. Am. Chem. Soc. 126, 14682–14683 (2004)
Acknowledgments Thanks are due to the B.R.N.S., Government of
India for generous financial support and the UGC for providing
research fellowship to R. B. and M. C.
21. Kaur, S., Kumar, S.: Photoactive chemosensors 4: a Cu2? protein
cavity mimicking fluorescent chemosensor for selective Cu2?
recognition. Tetrahedron Lett. 45, 5081–5085 (2004)
22. Bag, B., Bharadwaj, P.K.: Attachment of electron-withdrawing 2,
4-dinitrobenzene groups to a cryptand-based receptor for Cu(II)/
H ? -specific exciplex and monomer emissions. Org. Lett. 7,
1573–1576 (2005)
References
1. Schraderr, T., Hamilton, A.D. (eds.): Functional Synthetic
Receptors. Wiley-VCH, Weinheim (2005)
23. Royzen, M., Dai, Z., Canary, J.W.: Ratiometric displacement
approach to Cu(II) sensing by fluorescence. J. Am. Chem. Soc.
127, 1612–1613 (2005)
24. Xu, Z., Xiao, Y., Qian, X., Cui, J.N., Cui, D.: Ratiometric and
selective fluorescent sensor for CuII based on internal charge
transfer (ICT). Org. Lett. 7, 889–892 (2005)
25. Zeng, L., Miller, E.W., Pralle, A., Isacoff, E.Y., Chang, C.-J.:
A selective turn-on fluorescent sensor for imaging copper in
living cells. J. Am. Chem. Soc. 128, 10–11 (2006)
26. Jun, E.J., Won, H.N., Kim, J.S., Lee, K.-H., Yoon, J.: Unique
blue shift due to the formation of static pyrene excimer: highly
selective fluorescent chemosensor for Cu2?. Tetrahedron Lett. 47,
4577–4580 (2006)
2. Desvergne, J.P., Czarnik, A.W.: Chemosensors of Ion and Mol-
ecule Recognition. Kluwer, Dordrecht (1997)
3. Beer, P.D., Gale, P.A.: Anion recognition and sensing: the state
of the art and future perspectives. Angew. Chem. Int. Ed. 40,
486–516 (2001)
4. De Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley,
A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling
recognition events with fluorescent sensors and switches. Chem.
Rev. 97, 1515–1566 (1997)
5. Harris, E.D.: Copper and iron: a landmark connection of two
essential metals. J. Trace Elem. Exp. Med. 14, 207–210 (2001)
6. Saltman, P.D., Strause, L.G.: The role of trace minerals in oste-
oporosis. J. Am. Coll. Nutr. 12, 384–390 (1993)
27. Wen, Z.-C., Yang, R., He, H., Jiang, Y.-B.: A highly selective
charge transfer fluoroionophore for Cu2?. Chem. Commun. 106–
107 (2006)
7. Frieden, E., Osaki, S., Kobayashi, H.: Copper proteins and oxy-
gen; correlations between structure and function of the copper
oxidases. J. Gen. Physiol. 49, 213–252 (1965)
123