212
V.T. Kasumov et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 104 (2013) 203–212
[10] (a) N. Yoshida, N. Ito, K. Ichikawa, J. Chem. Soc., Perkin Trans. 2 (1997) 2387–
2392;
linearly decreased from 4.12 to 1.79 lB at 300 K to 2.48 and 1.13 lB
at 10 K, respectively. Chemical oxidation of ligands lead to the for-
mation of a new band in the 500–530 nm region assignable to phe-
noxyl radicals. Also, except 8, along with the disapperance of the
d–d and LMCT bands, a weak shoulder around 500–560 nm was
observed for the oxidized complexes. The electrochemical behavior
of copper complexes also exhibit the presence of noninteracting
copper(II) centers where the redox processes occur. Thus, accord-
ing to electrochemical and chemical study results, metal centered
oxidation can be proposed for these complexes.
(b) N. Yoshida, K. Ichikawa, Chem. Commun. (1997) 1091–1092;
(c) N. Yoshida, H. Oshio, T. Ito, Chem. Commun. (1998) 63–64;
(d) N. Yoshida, H. Oshio, T. Ito, J. Chem. Soc., Perkin Trans. 2 (1999) 975–983;
(e) N. Yoshida, H. Oshio, T. Ito, J. Chem. Soc., Perkin Trans. 2 (2001) 1674–
1678.
[11] (a) P.E. Kruger, N. Martin, M. Nieuwenhuyzen, J. Chem. Soc., Dalton Trans.
(2001) 1966–1970;
(b) J. Keegan, P.E. Kruger, M. Nieuwenhuyzen, N. Martin, Cryst. Growth Des. 2
(2002) 329–334;
(c) I.I. Oleinik, I.V. Oleinik, S.S. Ivanchev, G.A. Tolstikov, Rus. J. Org. Chem. 45
(2009) 528–535.
[12] (a) G. Novitchi, J.-P. Costes, J-P. Tuchagues, J. Chem. Soc., Dalton Trans. (2004)
1739–1742;
Acknowledgements
(b) Z. Chu, W. Huang, J. Mol. Struct. 837 (2007) 15–22;
(c) Z. Huang, J.L. Tian, X.H. Bu, Inorg. Chem. Commun. 8 (2005) 194–198;
(d) P. Halder, P.R. Banerjee, E. Zangrando, T.K. Paine, Eur. J. Inorg. Chem. (2008)
5659–5665.
Financial support by the Harran University Sciences Research
Council (HUBAK is gratefully acknowledged. The authors are grate-
ful to Prof. Rza Abbasoglu (KTU) for helping in AM1 optimization of
ligands.
[13] (a) A.A. Medjidov, V.T. Kasumov, H. Mamedov, Russ. J. Coord. Chem. 7 (1981)
66–71;
(b) M.H. Guseyinova, A.A. Medjidov, V.T. Kasumov, J. Struct. Chem. 23 (1982)
115–119;
(c) V.T. Kasumov, A.A. Medzhidov, I.A. Golubeva, T.P. Vishnyakova, R.Z. Rzaev,
Russ. J. Coord. Chem. 17 (1991) 1698–1703;
References
(d) V.T. Kasumov, F. Koksal, Spectrochim. Acta A 61 (2005) 225–231;
(e) S. Ozalp-Yaman, V.T. Kasumov, A.M. Onal, Polyhedron 24 (2005) 1821–
1828.
[1] (a) R.H. Holm, E.I. Solomon, A. Majumdar, A. Tenderholt, Coord. Chem. Rev.
255 (2011) 993–1015;
[14] (a) J.F. Larrow, E.N. Jacobsen, Y. Gao, Y. Hong, C.M. Zeppe, J. Org. Chem. 57
(1994) 1939–1942;
(b) B.A. Jazdewski, W.B. Tolman, Coord. Chem. Rev. 200–202 (2000) 633–685.
[2] (a) R.D. Jones, D.A. Summerville, F. Basolo, Chem. Rev. 79 (1979) 139–179;
(b) J.A. Stubbe, Annu. Rev. Biochem. 58 (1989) 257–285;
(c) P. Chaudhuri, M. Hess, T. Weyhermüller, K. Wieghardt, Angew. Chem. Int.
Ed. 38 (1999) 1095–1098.
[3] (a) L.J. Klein, K.S. Alleman, D.G. Peters, J.A. Karty, J.P. Reilly, J. Electroanal.
Chem. 481 (2000) 24–33;
(b) J. Hockertz, S. Steenken, J.K. Wieghardt, P. Hildebrandtl, J. Am. Chem. Soc.
115 (1993) 11222–11230.
[4] (a) K. Srinivasan, P. Michaud, J.K. Kochi, J. Am. Chem. Soc. 108 (1986) 2309–
2320;
(b) N.D. Chasteen, R.L. Belford, Inorg. Chem. 9 (1970) 169–175.
[15] (a) G.E. Batley, D.P. Graddon, Aust. J. Chem. 20 (1967) 877–883;
(b) A. Bigotti, V. Galasso, G. DeAlti, Spectrochim. Acta 28 A (1972) 1581–1585;
(c) S.J. Gruber, C.M. Harris, E. Sinn, J. Inorg. Nucl. Chem. 30 (1968) 1805.
[16] (a) G.C. Percy, D.A. Thornton, J. Inorg. Nucl. Chem. 35 (1973) 2319–2327;
(b) B.W. Gung, Z. Zhu, J. Org. Chem. 61 (1996) 6482–6483.
[17] (a) W.E. Bull, S.K. Madan, J.E. Willis, Inorg. Chem. 2 (1963) 303–306;
(b) S.K. Madan, Inorg. Chem. 6 (1967) 421–424;
(c) P.S. Mukherjee, N. Das, P. Stang, J. Org. Chem. 69 (2004) 3526–3529.
[18] (a) S.M. Crawford, Spectrochim. Acta 19 (1963) 255–261;
(b) J.G. Radziszewski, M. Gil, A. Gorski, J. Spanget-Larsen, J. Waluk, B.J. Mroz, J.
Chem. Phys. 115 (2001) 9733–9738.
(b) L. Canali, D.C. Sherrington, Chem. Soc. Rev. 28 (1998) 85–93;
(c) J.F. Larrow, E.N. Jacobsen, Top. Organomet. Chem. 6 (2004) 123–152;
(d) T. Katsuki, Coord. Chem. Rev. 140 (1995) 189–214.
[19] (a) H.H. Jaffe, M. Orchin, Theory and Applications of Ultraviolet Spectroscopy,
Wiley, New York, 1962;
[5] (a) C.G. Pierpont, Coord. Chem. Rev. 219–221 (2001) 415–433;
(b) J.W. Whittaker, Chem. Rev. 103 (2003) 2347–2364;
(c) P. Chaudhuri, K. Wieghardt, Prog. Inorg. Chem. 50 (2001) 151–216;
(d) T. Storr, P. Verma, Y. Shimazaki, E.C. Wasinger, T.D.P. Stack, Chem. – Eur. J.
16 (2010) 8980–8983;
(e) F. Michel, S. Torelli, F. Thomas, C. Duboc, C. Philouze, C. Belle, S. Hamman, E.
Saint-Aman, J.-L. Pierre, Angew. Chem. 117 (2005) 442–445.
[6] (a) M.S. Rogers, D.M. Dooley, Curr. Opin. Chem. Biol. 7 (2003) 189–196;
(b) J. Stubbe, W.A. van der Donk, Chem. Rev. 98 (1998) 705–762;
(c) V.C. Gibson, S.K. Spitzmesser, Chem. Rev. 103 (2003) 283–315;
(d) T. Kotuku, Adv. Synth. Catal. 344 (2002) 131–148;
(e) D.A. Atwood, A.R. Hutchson, Y.Z. Zang, Structure and Bonding, vol. 105,
Springer-Verlag, Berlin, 2003. pp. 167–201.
[7] (a) S.J. Gruber, C.M. Harris, E. Sinn, J. Inorg. Nucl. Chem. 30 (1968) 1805–1830;
(b) E. Sinn, Coord. Chem. Rev. 5 (1970) 313–347;
(c) J.P. Costes, F. Dahan, A. Dupuis, Inorg. Chem. 39 (2000) 165–168.
[8] (a) A. Ehrenberg, P. Reichard, J. Biol. Chem. 247 (1972) 3485–3488;
(b) P. Nordlund, M. Sjöberg, H. Eklund, Nature 345 (1990) 593–598;
(c) M. Sahlin, A. Gräslund, A. Ehrenberg, B.M. Sjöberg, J. Biol. Chem. 257 (1982)
366–369.
[9] (a) K. Kawai, T. Fujita, Top. Organomet. Chem. 26 (2009) 3–4;
(b) P.N.W. Baxter, J.M. Lehn, J. Fischer, M.T. Youinou, Angew. Chem., Int. Ed.
Engl. 33 (1994) 2284–2287;
(b) G.L. Estiu, A.H. Jubert, J. Costamagna, J. Mol. Struct. 367 (1996) 97–110.
[20] (a) B. Bosnich, J. Am. Chem. Soc. 90 (1968) 627–632;
(b) A.C. Braithwaite, T.N. Waters, J. Inorg. Nucl. Chem. 35 (1973) 3223–3229.
[21] (a) A.A.G. Tomlinson, B.J. Hathaway, J. Chem. Soc. A (1968) 1685–1688;
(b) P.M. Birker, J. Helder, G. Henkel, B. Krebs, J. Reedijk, Inorg. Chem. 21 (1982)
357–363;
(c) B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 6 (1970) 143–207.
[22] (a) B.J. Hathaway, R.J. Dudley, P.J. Nicholls, J. Chem. Soc. A. (1969) 1845–1848;
(b) B.J. Hathaway, I.N. Proctor, R.C. Slade, A.A. Tomlinson, J. Chem. Soc. A
(1969) 2219–2224.
[23] (a) J. Lewis, R.A. Walton, J. Chem. Soc (1966) 1559–1562 (A);
(b) L. Sacconi, M. Ciampolini, J. Chem. Soc. (1964) 276–280.
[24] H. Shimakoshi, S. Hirose, M. Ohba, T. Shiga, H. Okawa, Y. Hisaeda, Bull. Chem.
Sos. Jpn. 78 (2005) 1040–1046.
[25] P. Thuiry, J. Zarembowitch, Inorg. Chem. 25 (1986) 2001–2008.
[26] D.H. Lee, N. Wei, N.N. Murthy, Z. Tyeklar, K.D. Karlin, S. Kaderli, B. Jung, A.D.
Zuberbuhler, J. Am. Chem. Soc. 117 (1995) 12498–12513.
[27] K.D. Karlin, Z. Tyeklar, A. Farooq, M.S. Haka, P. Ghosh, R.W. Cruse, Y. Gultneh,
J.C. Hayes, P.J. Toscano, Zubieta, J. Inorg. Chem. 31 (1992) 1436–1451.
[28] H. Oshio, J. Chem. Soc., Dalton Trans. (1990) 2985–2989.
[29] W. Mazurek, A.M. Bond, M.J. O’Connor, A.G. Wedd, Inorg. Chem. 25 (1986)
906–915.
(c) H. Makio, N. Kashiwa, T. Fujita, Adv. Synth. Catal. 344 (2002) 477–493;
(d) A.F. Mason, G.W. Coates, J. Am. Chem. Soc. 126 (2004) 16326–16327;
(e) H. Makio, H. Terao, I. Washita, T. Fujita, Chem. Rev. 111 (2011) 2363–2449.
[30] A.J. Bard, L.R. Faulkner (Eds.), Electrochemical Methods: Fundamentals and
Applications, 2nd ed., Wiley, New York, 2001.