Organometallics
Communication
olefin complexes.20,21 The carboxylic acid proton resonance
appears at δ 12.6 ppm, while the olefinic protons of acrylic acid
are upfield shifted to δ 2.45, 2.00, and 1.51 ppm. (iPrDI)Ni(η2-
CH2CHCO2H) was also formed in >98% conversion when
(iPrDI)Ni(η4-C4H6) was exposed to 1 equiv of acrylic acid by
straightforward ligand substitution. (iPrDI)Ni(η2-CH2
CHCO2H) is metastable and underwent clean oxidation to
(iPrDI)Ni(κ2-O2CCHCH2) (with observed release of H2)
over the course of 2 h in benzene-d6 at ambient temperature. The
identity of the resulting metal complex was confirmed by both
1H NMR and EPR spectroscopy. Due to the limited stability of
(iPrDI)Ni(η2-CH2CHCO2H), the methyl acrylate derivative,
previously characterized by Brookhart and co-workers,21 was
synthesized for comparison and exhibited remarkably similar 1H
NMR resonances and corroborates the assignment of the η2-
synthetic details). Single crystals of (iPrDI)Ni(η2-CH2
CHCO2Me) suitable for X-ray diffraction were obtained from
a concentrated toluene solution at −35 °C for 48 h. A
representation of the solid-state structure is presented in Scheme
2, where, on the basis of the bond distances, the nickel is bound
to a neutral form of the α-diimine chelate. The C(sp2)−C(sp2)
bond of the η2-bound methyl acrylate ligand is significantly
elongated to 1.431(3) Å, indicating a high degree of π back-
donation from nickel.
In summary, an α-diimine nickel vinyl complex was
synthesized and spectroscopically and structurally characterized
and is a rare example of an isolable unsubstituted transition-
metal−vinyl compound. Its reactivity with CO2 and acrylic acid
was demonstrated where insertion of CO2 into (iPrDI)Ni(CH
CH2) yielded (iPrDI)Ni(κ2-O2CCHCH2), which was also
characterized and its electronic structure determined. Addition
of acrylic acid to either (iPrDI)Ni(CHCH2) or (iPrDI)Ni(η4-
C4H6) produced metastable (iPrDI)Ni(η2-CH2CHCO2H),
which slowly converted to the nickel acrylate by a currently
unknown oxidative pathway that releases H2. Efforts to remove
acrylate from the nickel center to render this process catalytic are
currently under investigation.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank SABIC for financial support.
■
REFERENCES
■
(1) (a) Kraus, S.; Rieger, B. Ni-Catalyzed Synthesis of Acrylic Acid
Derivatives from CO2 and Ethylene. Topics in Organometallic
Chemistry; Lu, X.-B., Ed.; Springer International: Berlin, 2015.
(b) Aresta, M.; Angelini, A. The Carbon Dioxide Molecule and the
Effects of Its Interaction with Electrophiles and Nucleophiles. Topics in
Organometallic Chemistry; Springer: Cham, Switzerland, 2015. (c) Brill,
M.; Lazreg, F.; Cazin, C. S. J.; Nolan, S. P. Transition Metal-Catalyzed
Carboxylation of Organic Substrates with Carbon Dioxide. Topics in
Organometallic Chemistry; Springer: Cham, Switzerland, 2015.
(d) Gibson, D. H. Chem. Rev. 1996, 96, 2063−2096. (e) Ohara, T.;
Sato, T.; Shimizu, N.; Prescher, G.; Schwind, H.; Weiberg, O.; Marten,
K.; Greim, H. Acrylic Acid and Derivatives. In Ullmann’s Encyclopedia of
Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2011. (f) Julia-
Hernandez, F.; Gaydou, M.; Serrano, El; van Gemmeren, M.; Martin, R.
Top. Curr. Chem. 2016, 374, 45. (g) Manzini, S.; Huguet, N.; Trapp, O.;
Paciello, R. A.; Schaub, T. Catal. Today 2017, 281, 379−386.
̈
(2) Plessow, P. N.; Schafer, A.; Limbach, M.; Hofmann, P.
Organometallics 2014, 33, 3657−3668.
(3) Hoberg, H.; Peres, Y.; Kruger, C.; Tsay, Y.-H. Angew. Chem., Int.
̈
Ed. Engl. 1987, 26, 771−773.
(4) (a) Galindo, A.; Pastor, A.; Perez, P. J.; Carmona, E.
Organometallics 1993, 12, 4443−4451. (b) Alvarez, R.; Carmona, E.;
Cole-Hamilton, D. J.; Galindo, A.; Gutierrez-Puebla, E.; Monge, A.;
Poveda, M. L.; Ruiz, C. J. Am. Chem. Soc. 1985, 107, 5529−5531.
̈
(5) Hendriksen, C.; Pidko, E. A.; Yang, G.; Schaffner, B.; Vogt, D.
Chem. - Eur. J. 2014, 20, 12037−12040.
(6) (a) Huguet, N.; Jevtovikj, I.; Gordillo, A.; Lejkowski, M. L.;
Lindner, R.; Bru, M.; Khalimon, A. Y.; Rominger, F.; Schunk, S. A.;
Hofmann, P.; Limbach, M. Chem. - Eur. J. 2014, 20, 16858−16862.
́
́
(b) Lejkowski, M. L.; Lindner, R.; Kageyama, T.; Bodizs, G. E.; Plessow,
P. N.; Muller, I. B.; Schafer, A.; Rominger, F.; Hofmann, P.; Futter, C.;
̈
̈
Schunk, S. A.; Limbach, M. Chem. - Eur. J. 2012, 18, 14017−14025.
(7) Siegbahn, P. E. M.; Blomberg, M. R. A.; Svensson, M. J. Am. Chem.
Soc. 1993, 115, 1952−1958.
ASSOCIATED CONTENT
* Supporting Information
■
́
(8) (a) Leonard, N. G.; Chirik, P. J. ACS Catal. 2018, 8, 342−348.
S
(b) Pappas, I.; Treacy, S.; Chirik, P. J. ACS Catal. 2016, 6, 4105−4109.
(c) Palmer, W. N.; Diao, T.; Pappas, I.; Chirik, P. J. ACS Catal. 2015, 5,
622−626. (d) Bart, S. C.; Hawrelak, E. J.; Lobkovsky, E.; Chirik, P. J.
Organometallics 2005, 24, 5518−5527. (e) Johnson, L. K.; Killian, C.
M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414.
The Supporting Information is available free of charge on the
Experimental procedures and data, NMR spectra, crystal
data, and details of the calculations (PDF)
Cartesian coordinates of calculated structures (TXT)
(9) Venturi, C.; Bellachioma, G.; Cardaci, G.; Macchioni, A.;
Zuccaccia, C. Inorg. Chim. Acta 2005, 358, 3815−3823.
(10) Meinhard, D.; Reuter, P.; Rieger, B. Organometallics 2007, 26,
751−754.
Accession Codes
(11) When vinylmagensium bromide was used, reduction side
products along with large amounts of free (iPrDI) were observed.
(12) Marlier, E. E.; Tereniak, S. J.; Ding, K.; Mulliken, J. E.; Lu, C. C.
Inorg. Chem. 2011, 50, 9290−9299.
graphic data for this paper. These data can be obtained free of
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; fax: +44 1223 336033.
(13) Muresan, N.; Lu, C. C.; Ghosh, M.; Peters, J. C.; Abe, M.;
̈
Henling, L. M.; Weyhermoller, T.; Bill, E.; Wieghardt, K. Inorg. Chem.
2008, 47, 4579−4590.
(14) Mindiola, D. J.; Waterman, R.; Jenkins, D. M.; Hillhouse, G. L.
Inorg. Chim. Acta 2003, 345, 299−308.
AUTHOR INFORMATION
Corresponding Author
(15) (a) Sinnema, J. C. M.; Fendesak, G. H. B.; tom Dieck, H. J.
Organomet. Chem. 1990, 390, 237−250. (b) Diercks, R.; Stamp, L.;
Kopf, J.; tom Dieck, H. Angew. Chem., Int. Ed. Engl. 1984, 23, 893−894.
(16) Dong, Q.; Zhao, Y.; Su, Y.; Su, J.-H.; Wu, B.; Yang, X.-J. Inorg.
Chem. 2012, 51, 13162−13170.
■
ORCID
(17) (a) Hanna, B. S.; MacIntosh, A. D.; Ahn, S.; Tyler, B. T.; Palmore,
G. T. R.; Williard, P. G.; Bernskoetter, W. H. Organometallics 2014, 33,
́
́
D
Organometallics XXXX, XXX, XXX−XXX