ORGANIC
LETTERS
2011
Vol. 13, No. 9
2298–2301
Rapid Determination of Enantiomeric
Excess of r-Chiral Cyclohexanones Using
Circular Dichroism Spectroscopy
Diana Leung and Eric V. Anslyn*
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin,
Texas 78712, United States
Received March 2, 2011
ABSTRACT
Ketone handedness was discriminated using circular dichroism (CD) spectroscopy by monitoring the metal-to-ligand charge transfer (MLCT)
bands of complexes between [CuI((S)-1)(CH3CN)2]PF6 and derivatized R-chiral cyclohexanones (4). This method was able to quantify the
enantiomeric excess of unknown samples using a calibration curve, giving an absolute error of (7%. The analysis was fast, allowing potential
application of this assay in high-throughput screening (HTS).
Asymmetric synthesis is well-recognized as a cost-effec-
tive method for the production of enantiomerically pure
products.1 Combinatorial methods combined with high-
throughput screening (HTS) have become a tool for find-
ing appropriate catalysts/auxiliaries for asymmetric synth-
esis due to the allowance for a large number of candidates
to be rapidly examined. However, the determination of the
enantiomeric excess (ee) of reaction products is a limiting
factor in catalyst discovery. Chromatographic techniques
are commonly used to determine ee due to their high
accuracy, but the intrinsically serial analysis restricts their
ultimate use in HTS.2
Optical signaling techniques are well adapted for HTS
because they use instruments such as circular dichroism
(CD) spectrophotometers, fluorimeters, and UVꢀvis spec-
trophotometers, which require less time for analysis com-
pared to chromatographic techniques. Typically, a single
measurement can be conducted in under a minute, allow-
ing for rapid analysis of samples for HTS of asymmetric
catalysts/auxiliaries. Due to the advantage of speed, nu-
meroustechniquesusing optical signaling approaches have
been investigated for the determination of ee.3ꢀ7 These
optical signaling techniques have the advantage that they
can be transitioned to a microwell plate format, allowing
(3) Molecular Sensors: (a) Nieto, S.; Dragna, J. M.; Anslyn, E. V.
Chem.;Eur. J. 2010, 16, 227. (b) Nieto, S.; Lynch, V. M.; Anslyn, E. V.;
Kim, H.; Chin, J. Org. Lett. 2008, 10, 5167. (c) Nieto, S.; Lynch, V. M.;
Anslyn, E. V.; Kim, H.; Chin, J. J. Am. Chem. Soc. 2008, 130, 9232. (d)
Leung, D.; Anslyn, E. V. J. Am. Chem. Soc. 2008, 130, 12328. (e) Leung,
D.; Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem.
Soc. 2008, 130, 12318. (f) Shabbir, S. H.; Regan, C. J.; Anslyn, E. V.
Proc. Natl. Acad. Sci. U.S.A., Early Edition 2009, 1. (g) Zhu, L.; Shabbir,
S. H.; Anslyn, E. V. Chem.;Eur. J. 2006, 13, 99. (h) Liu, S.; Pestano,
J. P. C.; Wolf, C. J. Org. Chem. 2008, 73, 4267. (i) Richard, G. I.;
Marwani, H. M.; Jiang, S.; Fakayode, S. O.; Lowry, M.; Strongin,
R. M.; Warner, I. M. Appl. Spectrosc. 2008, 62, 476. (j) Wolf, C.; Liu, S.;
Reinhardt, B. C. Chem. Commun. 2006, 4242. (k) Corradini, R.;
Paganuzzi, C.; Marchelli, R.; Pagliari, S.; Dossena, A.; Duchateau, A.
J. Inclusion Phenom. Macrocyclic Chem. 2007, 57, 625. (l) Corradini, R.;
Paganuzzi, C.; Marchelli, R.; Pagliari, S.; Sforza, S.; Dossena, A.;
Galaverna, G.; Duchateau, A. J. Mater. Chem. 2005, 15, 2741.
(4) IR thermography: (a) Reetz, M. T.; Becker, M. H.; Kuhling,
K. M.; Holzwarth, A. Angew. Chem., Int. Ed. 1998, 37, 2647. (b) Reetz,
M. T.; Becker, M. H.; Liebl, M.; Furstner, A. Angew. Chem., Int. Ed.
2000, 39, 1236. (c) Reetz, M. T.; Hermes, M.; Becker, M. H. Appl.
Microbiol. Biotechnol. 2001, 55, 531. (d) Millot, N.; Borman, P.; Anson,
M. S.; Campbell, I. B.; Macdonald, S. J. F.; Mahmoudian, M. Org.
Process Res. Dev. 2002, 6, 463.
(1) (a) Tsukamoto, M.; Kagan, H. B. Adv. Synth. Catal. 2002, 344,
453. (b) Charbonneau, V.; Ogilvie, W. W. Mini-Rev. Org. Chem. 2005, 2,
313.
(2) Traverse, J. F.; Snapper, M. L. Drug Discovery Today 2002, 7,
1002.
r
10.1021/ol2004885
Published on Web 04/12/2011
2011 American Chemical Society