ORGANIC
LETTERS
Phosphine-Catalyzed β0-Umpolung
Addition of Nucleophiles to Activated
r-Alkyl Allenes
2011
Vol. 13, No. 10
2586–2589
Tioga J. Martin, Venus G. Vakhshori, Yang S. Tran, and Ohyun Kwon*
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607
Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
Received March 15, 2011
ABSTRACT
Highly functionalized alkenes can be prepared through phosphine-catalyzed β0-umpolung additions of nucleophiles (carbon-, oxygen-, nitrogen-,
and sulfur-centered) to activated r-disubstituted allenes, providing many potentially useful synthetic intermediates in good to excellent yields,
often with high levels of stereoselectivity for the product olefin geometry. Various substitution patterns around the allene are compatible with the
process, showcasing the synthetic utility of allenes under the conditions of nucleophilic phosphine catalysis.
Nucleophilic phosphine catalysis is firmly established as
a reliable platform for a variety of transformations
involving activated allenes as starting materials.1 Within
this field, γ-umpolung addition of nucleophiles to activated
allenes and acetylenes allows the formation of a myriad of
substrates. Since the first report by Trost,2 there has been
increasing interest in phosphine-catalyzed γ-umpolung ad-
ditions of pronucleophiles to electron-deficient alkynes and
allenes (Scheme 1; eq 1).3 Combining the mechanistic in-
sights gained from studies of the γ-umpolung additions and
nucleophilic phosphine-catalyzed reactions of R-substituted
allenoates developed in our laboratory4 and by others,5 we
envisaged the possibility of a β0-umpolung addition to R-
alkyl allenoates (Scheme 1; eq 2). This process facilitates
functionalization of the seemingly unactivated β0-CꢀH
bond, allowing the generation of unique, highly versatile
olefinic products. The observed activation of the β0-carbon
atom of R-alkyl allenoates stems from the equilibrium
(1) For reviews, see: (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res.
2001, 34, 535. (b) Valentine, D. H.; Hillhouse, J. H. Synthesis 2003, 317.
(c) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035. (d)
Lu, X.; Du, Y.; Lu, C. Pure Appl. Chem. 2005, 77, 1985. (e) Nair, V.;
Menon, R. S.; Sreekanth, A. R.; Abhilash, N.; Biju, A. T. Acc. Chem.
Res. 2006, 39, 520. (f) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int.
Ed. 2008, 47, 1560. (g) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev.
2008, 37, 1140. (h) Kwong, C. K.-W.; Fu, M. Y.; Lam, C. S.-L.; Toy,
P. H. Synthesis 2008, 2307. (i) Aroyan, C. E.; Dermenci, A.; Miller, S. J.
Tetrahedron 2009, 65, 4069. (j) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev.
2009, 38, 3102. (k) Marinetti, A.; Voituriez, A. Synlett 2010, 174. (l)
Beata, K. Cent. Eur. J. Chem. 2010, 1147.
(2) (a) Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 3167. (b)
Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 10819. (c) Trost, B.
M.; Drake, G. R. J. Org. Chem. 1997, 62, 5670. Albeit not in catalytic
form, Cristau first demonstrated the γ-umpolung addition of nucleo-
philes to activated allenes; see: (d) Cristau, H.-J.; Viala, J.; Christol, H.
Tetrahedron Lett. 1982, 23, 1569. (e) Cristau, H.-J.; Viala, J.; Christol, H.
Bull. Chim. Soc. Fr. 1985, 5, 980. (f) Cristau, H. J.; Fonte, M.; Torreilles,
E. Synthesis 1989, 301.
(3) (a) Zhang, C.; Lu, X. Synlett 1995, 645. (b) Chen, Z.; Zhu, G.;
Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Org. Chem. 1998, 63, 5631. (c)
Alvarez-Ibarra, C.; Csaky, A. G.; Oliva, C. G. Tetrahedron Lett. 1999,
40, 8465. (d) Alvarez-Ibarra, C.; Csaky, A. G.; Oliva, C. G. J. Org.
Chem. 2000, 65, 3544. (e) Lu, C.; Lu, X. Org. Lett. 2002, 4, 4677. (f)
Pakulski, Z.; Demchuk, O. M.; Frelek, J.; Luboradzki, R.; Pietrusiewicz,
K. M. Eur. J. Org. Chem. 2004, 3913. (g) Virieux, D.; Guillouzic, A.-F.;
Cristau, H.-J. Tetrahedron 2006, 62, 3710. (h) Chung, Y. K.; Fu, G. C.
Angew. Chem., Int. Ed. 2009, 48, 2225. (i) Smith, S. W.; Fu, G. C. J. Am.
Chem. Soc. 2009, 131, 14231. (j) Guan, X.-Y.; Wei, Y.; Shi, M. Org. Lett.
2010, 12, 5024. (k) Zhang, Q.; Yang, L.; Tong, X. J. Am. Chem. Soc.
2010, 132, 2550.
(4) (a) Zhu, X.-F.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125,
4716. (b) Tran, Y. S.; Kwon, O. Org. Lett. 2005, 7, 4289. (c) Castellano,
S.; Fiji, H. D. G.; Kinderman, S. S.; Watanabe, M.; de Leon, P.;
Tamanoi, F.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 5843. (d) Tran,
Y. S.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 12632. (e) Lu, K.; Kwon,
O. Org. Synth. 2009, 86, 212. (f) Guo, H.; Xu, Q.; Kwon, O. J. Am. Chem.
Soc. 2009, 131, 6318. (g) Khong, S. N.; Tran, Y. S.; Kwon, O. Tetra-
hedron 2010, 66, 4760.
(5) (a) Zhao, G.-L.; Shi, M. Org. Biomol. Chem. 2005, 3, 3686. (b)
Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234. (c) Wang, T.;
Ye, S. Org. Lett. 2010, 12, 4168.
r
10.1021/ol200697m
Published on Web 04/14/2011
2011 American Chemical Society