H. Fujioka et al. / Tetrahedron 67 (2011) 2949e2960
2959
Wahlstrom, J. L.; Ronald, R. C. J. Org. Chem. 1998, 63, 6021; (c) Vaino, A. R.;
Szarek, W. A. Synlett 1995, 1157.
(5.0 equiv) was added to the reaction mixture and the resulting
solution was stirred at rt. After the reaction was completed, satd
NaHCO3 aq was added and the resulting solution was extracted
with CH2Cl2. The organic layer was dried over Na2SO4 and evapo-
rated in vacuo. The residue was purified by column chromatogra-
phy to give BOM 4 or SEM ether 5.
16. (a) Corey, E. J.; Gras, J.-L.; Ulrich, P. Tetrahedron Lett. 1976, 809; (b) Ikota, N.;
Ganem, B. J. Chem. Soc., Chem. Commun. 1978, 869; (c) Williams, D. R.; Sak-
darat, S. Tetrahedron Lett. 1983, 24, 3965; (d) Corey, E. J.; Hua, D. H.; Seitz, S. P.
Tetrahedron Lett. 1984, 24, 3; (e) Rigby, J. H.; Wilson, J. Z. Tetrahedron Lett.
1984, 25, 1429; (f) Vadolas, D.; Germann, H. P.; Thakur, S.; Keller, W.; Hei-
demann, E. Int. J. Pept. Protein Res. 1985, 25, 554; (g) Shibasaki, M.; Ishida, Y.;
Okabe, N. Tetrahedron Lett. 1985, 26, 2217; (h) Holton, R. A.; Juo, R. R.; Kim, H.
B.; Williams, A. D.; Harusawa, S.; Lowenthal, R. E.; Yogai, S. J. Am. Chem. Soc.
1988, 110, 6558; (i) Williams, D. R.; Jass, P. A.; Tse, H.-L. A.; Gaston, R. D. J. Am.
Chem. Soc. 1990, 112, 4552; (j) Kim, S.; Park, Y. H.; Kee, I. S. Tetrahedron Lett.
1991, 32, 3099; (k) Miyata, O.; Shinada, T.; Ninomiya, I.; Naito, T. Tetrahedron
Lett. 1991, 32, 3519; (l) Nicolaou, K. C.; Yue, E. W.; Greca, S. L.; Nadin, A.; Yang,
Z.; Leresche, J. E.; Tsuri, T.; Naniwa, Y.; Riccardis, F. D. Chem.dEur. J. 1995, 1,
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Re-
search (B) and for Scientific Research for Exploratory Research from
Japan Society for the Promotion of Science (JSPS) and Special Co-
ordination Funds for Promoting Science and Technology of the
Ministry of Education, Culture, Science and Technology, the Japa-
nese Government. The financial support from The Uehara Memorial
Foundation is also acknowledged.
ꢀ
ꢀ
467; (m) Benechie, M.; Khuong-Huu, F. J. Org. Chem. 1996, 61, 7133; (n)
Herbert, J. M.; Knight, J. G.; Sexton, B. Tetrahedron 1996, 52, 15257; (o) Pro-
copiou, P. A.; Cox, B.; Kirk, B. E.; Lester, M. G.; McCarthy, A. D.; Sareen, M.;
Sharratt, P. J.; Snowden, M. A.; Spooner, S. J.; Watson, N. S.; Widdowson, J. J.
Med. Chem. 1996, 39, 1413; (p) Sabitha, G.; Babu, R. S.; Rajkumar, M.; Srividya,
R.; Yadav, J. S. Org. Lett. 2001, 3, 1149; (q) Tanemura, K.; Suzuki, T.; Nishida, Y.;
Satsumabayashi, K.; Horaguchi, T. Chem. Lett. 2001, 1012; (r) Paquette, L. A.;
Chang, J.; Liu, Z. J. Org. Chem. 2004, 69, 6441; (s) Ireland, R. E.; Wuts, P. G. M.;
Ernst, B. J. Am. Chem. Soc. 1981, 103, 3205 Only one method under basic
conditions was reported.
References and notes
17. (a) Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 6260; (b) Still, W. C.; Mobilio, D.
J. Org. Chem. 1983, 48, 4785; (c) Tanner, D.; Somfai, P. Tetrahedron 1987, 43, 4395;
(d) Bajza, I.; Varga, Z.; Liptak, A. Tetrahedron Lett. 1993, 34, 1991; (e) Myers, A. G.;
Gin, D. Y.; Rogers, D. H. J. Am. Chem. Soc. 1994, 116, 4697; (f) Katoh, T.; ltoh, E.;
Yoshino, T.; Terashima, S. Tetrahedron 1997, 53, 10229; (g) Smith, A. B., III;
Doughty, V. A.; Lin, Q.; Zhuang, L.; McBriar, M. D.; Boldi, A. M.; Moser, W. H.;
Murase, N.; Nakayama, K.; Sobukawa, M. Angew. Chem., Int. Ed. 2001, 40, 191; (h)
Tan, C.-H.; Holmes, A. B. Chem.dEur. J. 2001, 7, 1845; (i) Izumi, M.; Wada, K.;
Yuasa, H.; Hashimoto, H. J. Org. Chem. 2005, 70, 8817; (j) Suzuki, K.; Tomooka,
K.; Katayama, E.; Matsumoto, T.; Tsuchihashi, G. J. Am. Chem. Soc. 1986, 108,
5221; (k) Roush, W. R.; Michaelides, M. R.; Tai, D. F.; Chong, W. K. M. J. Am. Chem.
Soc. 1987, 109, 7575; (l) Coleman, R. S.; Grant, E. B. J. Am. Chem. Soc. 1994, 116,
8795; (m) Nicolaou, K. C.; Hwang, C.-K.; Duggan, M. E.; Nugiel, D. A.; Abe, Y.;
Reddy, K. B.; DeFrees, S. A.; Reddy, D. R.; Awartani, R. A.; Conley, S. R.; Rutjes, F.
P. J. T.; Theodorakis, E. A. J. Am. Chem. Soc. 1995, 117, 10227; (n) Wender, P. A.;
Badham, N. F.; Conway, S. P.; Floreancig, P. E.; Glass, T. E.; Houze, J. B.; Krauss, N. E.;
Lee, D.; Marquess, D. G.; McGrane, P. L.; Meng, W.; Natchus, M. G.; Shuker, A. J.;
Sutton, J. C.; Taylor, R. E. J. Am. Chem. Soc.1997, 119, 2757; (o) Lee, K.; Cha, J. K. J. Am.
Chem. Soc. 2001, 123, 5590; (p) Keck, G. E.; Truong, A. P. Org. Lett. 2005, 7, 2153.
18. (a) Kandil, A. A.; Slessor, K. N. J. Org. Chem. 1985, 50, 5649; (b) Burke, S. D.;
Pacofsky, G. J. Tetrahedron Lett. 1986, 27, 445; (c) Jansson, K.; Frejd, T.; Kihlberg,
J.; Magnusson, G. Tetrahedron Lett. 1986, 27, 753; (d) Jansson, K.; Frejd, T.;
Kihlberg, J.; Magnusson, G. Tetrahedron Lett. 1988, 29, 361; (e) Pinto, B. M.;
Buiting, M. M. W.; Reimer, K. B. J. Org. Chem. 1990, 55, 2177; (f) Jansson, K.;
Noori, G.; Magnusson, G. J. Org. Chem. 1990, 55, 3181; (g) Kolb, H. C.; Hoffmann,
H. M. R. Tetrahedron: Asymmetry 1990, 1, 237; (h) Bailey, S.; Teerawutgulrag, A.;
Thomas, E. J. J. Chem. Soc., Chem. Commun. 1995, 2521; (i) Overmann, L. E.;
Paone, D. V. J. Am. Chem. Soc. 2001, 123, 9465; (j) Chen, M.-Y.; Lee, A. S.-Y. J. Org.
Chem. 2002, 67, 1384; (k) Lipshutz, B. H.; Pegram, J. J. Tetrahedron Lett. 1980, 21,
3343; (l) Lipshutz, B. H.; Pegram, J. J.; Morey, M. C. Tetrahedron Lett. 1981, 22,
4603; (m) Suzuki, K.; Matsumoto, T.; Tomooka, K.; Matsumoto, K.; Tsuchihashi,
G. Chem. Lett. 1987, 113; (n) Kan, T.; Hashimoto, M.; Yanagiya, M.; Shirahama, H.
Tetrahedron Lett. 1988, 29, 5417; (o) Hasegawa, A.; Ito, Y.; Ishida, H.; Kiso, M. J.
Carbohydr. Chem. 1989, 8, 125; (p) Kartha, K. P. R.; Kiso, M.; Hasegawa, A. J.
Carbohydr. Chem. 1989, 8, 675; (q) Lipshutz, B. H.; Miller, T. A. Tetrahedron Lett.
1989, 30, 7149; (r) White, J. D.; Kawasaki, M. J. Am. Chem. Soc. 1990, 112, 4991;
(s) Ireland, R. E.; Meissner, R. S.; Rizzacasa, M. A. J. Am. Chem. Soc. 1993, 115,
7166; (t) Sugita, K.; Shigeno, K.; Neville, C. F.; Sasai, H.; Shibasaki, M. Synlett
1994, 325; (u) Karim, S.; Parmee, E. R.; Thomas, E. J. Tetrahedron Lett. 1991, 32,
2269.
19. Selective deprotection of acetal in the presence of the ketal was achieved by the
coordination of TESOTf to less hindered acetal oxygen. We also studied the
effect of the substituent on the THP ether for the coordination manner of TE-
SOTf, see Refs. 3 and 4b.
20. We have reported the nucleophilic substitution reactions of the pyridinium salt
using various nucleophiles. (a) Fujioka, H.; Okitsu, T.; Sawama, Y.; Ohnaka, T.;
Kita, Y. Synlett 2006, 3077; (b) Fujioka, H.; Okitsu, T.; Ohnaka, T.; Li, R.; Kubo, O.;
Okamoto, K.; Sawama, Y.; Kita, Y. J. Org. Chem. 2007, 72, 7898; (c) Fujioka, H.;
Ohnaka, T.; Okitsu, T.; Kubo, O.; Okamoto, K.; Sawama, Y.; Kita, Y. Heterocycles
2007, 72, 529; (d) Fujioka, H.; Kubo, O.; Senami, K.; Okamoto, K.; Okitsu, T.; Kita,
Y. Heterocycles 2009, 79, 1113.
21. The regeneration of the MOM ether was also observed in the reaction. The
selectivity of the coordination was changed by the bulkiness of the sub-
stituents. The reaction of 1b (secondary MOM ether) afforded 6 (77%) and 2b
(5%). In the case of 1c (tertiary MOM ether), the yield of 6 increased to 81% and
only a trace amount of alcohol 2c was detected.
1. Schelhaas, M.; Waldmann, H. Angew. Chem., Int. Ed. 1996, 35, 2056.
2. Wuts, P. G. M.; Greene, T. W. Protective Groups in Organic Synthesis, 4th ed.; John
Wiley: Hoboken, New Jersey, 2006.
3. (a) Fujioka, H.; Sawama, Y.; Murata, N.; Okitsu, T.; Kubo, O.; Matsuda, S.; Kita, Y.
J. Am. Chem. Soc. 2004, 126, 11800; (b) Fujioka, H.; Okitsu, T.; Sawama, Y.;
Murata, N.; Li, R.; Kita, Y. J. Am. Chem. Soc. 2006, 128, 5930.
4. (a) Fujioka, H.; Okitsu, T.; Ohnaka, T.; Sawama, Y.; Kubo, O.; Okamoto, K.; Kita, Y.
Adv. Synth. Catal. 2007, 349, 636; (b) Fujioka, H.; Kubo, O.; Okamoto, K.; Senami,
K.; Okitsu, T.; Ohnaka, T.; Sawama, Y.; Kita, Y. Heterocycles 2009, 77, 1089.
5. Fujioka, H.; Kubo, O.; Senami, K.; Minamitsuji, Y.; Maegawa, T. Chem. Commun.
2009, 4429.
6. (a) Auerbach, J.; Weinreb, S. M. J. Chem. Soc., Chem. Commun. 1974, 298; (b)
Meyers, A. I.; Durandetta, J. L.; Munavu, R. J. Org. Chem. 1975, 40, 2025; (c)
ˇ
Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung,
B.-W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.;
Frobel, K.; Gais, H.-J.; Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.;
Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.;
Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, T.; Malchenko, S.; Martens, J.;
Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajan Babu, T. V.; Rousseau, G.; Sauter, H.
M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; Ueda, Y.;
Uyehara, T.; Vasella, A. T.; Vladuchick, W. C.; Wade, P. A.; Williams, R. M.; Wong,
ꢀ
H. N.-C. J. Am. Chem. Soc. 1981, 103, 3210; (d) Monti, H.; Leandri, G.; Klos-
Ringuet, M.; Corriol, C. Synth. Commun. 1983, 13, 1021; (e) Ireland, R. E.; Varney,
M. D. J. Org. Chem. 1986, 51, 635; (f) Amano, S.; Takemura, N.; Ohtsuka, M.;
Ogawa, S.; Chida, N. Tetrahedron 1999, 55, 3855; (g) Boehlow, T. R.; Harburn, J.
J.; Spilling, C. D. J. Org. Chem. 2001, 66, 3111; (h) Mander, L. N.; Thomson, R. J. J.
Org. Chem. 2005, 70, 1654.
7. (a) Nakata, T.; Schmid, G.; Vranesic, B.; Okigawa, M.; Smith-Palmer, T.; Kishi, Y. J.
Am. Chem. Soc. 1978, 100, 2933; (b) Hanessian, S.; Delorme, D.; Dufresne, Y.
Tetrahedron Lett. 1984, 25, 2515; (c) Moher, E. D.; Grieco, P. A.; Collins, J. L. J. Org.
Chem. 1993, 58, 3789; (d) Reddy, S. V.; Rao, R. J.; Kumar, U. S.; Rao, J. M. Chem.
Lett. 2003, 32, 1038; (e) Sharma, G. V. M.; Reddy, K. L.; Lakshmi, P. S.; Krishna, P.
R. Tetrahedron Lett. 2004, 45, 9229.
8. (a) Kieczykowski, G. R.; Schlessinger, R. H. J. Am. Chem. Soc. 1978, 100, 1938; (b)
Kim, S.; Kee, I. S.; Park, Y. H.; Park, J. H. Synlett 1991, 183; (c) Han, J. H.; Kwon, Y.
E.; Sohn, J.-H.; Ryu, D. H. Tetrahedron 2010, 66, 1673.
9. (a) Quindon, Y.; Morton, H. E.; Toakim, C. Tetrahedron Lett. 1983, 24, 3969; (b)
Corey, E. J.; Hua, D. H.; Seitz, S. P. Tetrahedron Lett. 1984, 25, 3; (c) Boeckman, R.
K., Jr.; Potenza, J. C. Tetrahedron Lett. 1985, 26, 1411; (d) Paquette, L. A.; Gao, Z.;
Ni, Z.; Smith, G. F. Tetrahedron Lett. 1997, 38, 1271.
10. (a) Seto, H.; Mander, L. N. Synth. Commun. 1992, 22, 2823; (b) Lee, A. S.-Y.; Hu, Y.;
Chu, S.-F. Tetrahedron 2001, 57, 2121; (c) Deville, J. P.; Behar, V. J. Org. Chem.
2001, 66, 4097; (d) Ramesh, C.; Ravindranath, N.; Das, B. J. Org. Chem. 2003, 68,
7101; (e) Keith, J. M. Tetrahedron Lett. 2004, 45, 2739; (f) Mohammadpoor-
Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mirjafari, A. Can. J.
Chem. 2008, 86, 831.
11. (a) Miyake, H.; Tsumura, T.; Sasaki, M. Tetrahedron Lett. 2004, 45, 7213; (b) Peng,
Y.; Ji, C.; Chen, Y.; Huang, C.; Jiang, Y. Synth. Commun. 2004, 34, 4325.
12. We examined the reactions with TMSOTf or TESOTf and both reagents could
form the collidinium salt without any differences. We then chose the less ex-
pensive TMSOTf for further optimization. The equivalent of reagents and the
order of the addition of reagents are important and decrease of reagents led to
remaining starting material. We also found that the use of Et2O with H2O for
hydrolysis gave a better result. Bis(n-decyloxy)methane was obtained in the
absence of Et2O as the major byproduct.
22. (a) Schwindeman, J. A.; Magnus, P. D. Tetrahedron Lett. 1981, 22, 4925; (b)
Guindon, Y.; Christiane, Y.; Morton, H. E. J. Org. Chem. 1984, 49, 3912; (c)
Morton, H. E.; Guindon, Y. J. Org. Chem. 1985, 50, 5379.
13. Bis(n-decyloxy)methane was obtained as the byproduct.
14. We attempted the use of TESOTf instead of TMSOTf to improve the reaction, but
the yield of 2j dropped to 47%.
23. Bandgar, B. P.; Hajare, C. T.; Wadgaonkar, P. P. J. Chem. Res., Synop. 1996, 90.
24. Berliner, M. A.; Belecki, K. J. Org. Chem. 2005, 70, 9618.
15. (a) I2/MeOH has been reported to be applicable not only to the deprotection of
the MOM group (Ref. 7e) but also to the deprotection of the trityl ether. (b)