T. McCallum, E. Slavko, M. Morin, L. Barriault
SHORT COMMUNICATION
[1]
[2]
D. H. R. Barton, S. W. McCombie, J. Chem. Soc. Perkin Trans.
1 1975, 1574–1585.
a) P. Girard, J. L. Namy, H. B. Kagan, J. Am. Chem. Soc. 1980,
102, 2693–2698; b) S. C. Dolan, J. MacMillan, J. Chem. Soc.,
Chem. Commun. 1985, 1588–1589; c) H. Sano, M. Ogata, T.
Migita, Chem. Lett. 1986, 15, 77–80; d) D. H. R. Barton, P.
Blundell, J. Dorchak, D. O. Jang, J. C. Jaszberenyi, Tetrahedron
1991, 47, 8969–8984; e) D. H. R. Barton, D. O. Jang, J. C. Jasz-
berenyi, Tetrahedron Lett. 1992, 33, 5709–5712; f) D. H. R.
Barton, D. O. Jang, J. C. Jaszberenyi, Tetrahedron Lett. 1992,
33, 2311–2314; g) D. H. R. Barton, D. O. Jang, J. C. Jaszber-
enyi, J. Org. Chem. 1993, 58, 6838–6842; h) K. Nishiyama, M.
Oba, M. Oshimi, T. Sugawara, R. Ueno, Tetrahedron Lett.
1993, 34, 3745–3748; i) M. Oba, K. Nishiyama, Synthesis 1994,
624–628; j) L. Zhang, M. Koreeda, J. Am. Chem. Soc. 2004,
126, 13190–13191; k) K. Lam, I. E. Markó, Org. Lett. 2008,
10, 2773–2776; l) K. Lam, I. E. Markó, Chem. Commun. 2009,
95–97; m) S. Ueng, L. Fensterbank, E. Lacîte, M. Malacria,
D. P. Curran, Org. Lett. 2010, 12, 3002–3005.
[3]
[4]
R. Lopez, D. Hays, G. Fu, J. Am. Chem. Soc. 1997, 119, 6949–
6950.
a) A. Myers, M. Movassaghi, B. Zheng, J. Am. Chem. Soc.
1997, 119, 8572–8573; b) J. D. Nguyen, B. Reiß, C. Dai, C. R. J.
Stephenson, Chem. Commun. 2013, 49, 4352–4354.
[5]
S. W. McCombie, W. B. Motherwell, M. J. Tozer, Organic Reac-
tions (Ed.: S. E. Denmark), Wiley, Hoboken, 2012, vol. 77, pp.
161–432, online.
Scheme 4. Proposed mechanism.
[6]
[7]
[8]
D. H. R. Barton, W. B. Motherwell, A. Stange, Synthesis 1981,
743–745.
V. Balzani, A. Credi, M. Venturi, ChemSusChem 2008, 1, 26–
58.
a) I. Saito, H. Ikehira, R. Kasatani, M. Watanabe, T. Matsu-
ura, J. Am. Chem. Soc. 1986, 108, 3115–3117; b) D. R. Prud-
homme, Z. Wang, C. J. Rizzo, J. Org. Chem. 1997, 62, 8257–
8260; c) A. Bordoni, R. M. de Lederkremer, C. Marino,
Carbohydr. Res. 2006, 341, 1788–1795.
Conclusions
In conclusion, we developed a photomediated reductive
deoxygenation reaction of unactivated primary alcohols. As
shown, this procedure for the bromination and deoxygen-
ation of primary alcohols is simple and functional-group
tolerant. This method was enabled by the unexpected dis-
covery of a bromination protocol for primary alcohols by
using only light, CBr4, and DMF. It was demonstrated that
CBr4 as a source of bromine was mild and compatible with
photoredox processes involving the powerful reducing abil-
ity of [Au2(dppm)2]Cl2. The high synthetic value of this
transformation was shown through the genesis of alkyl radi-
cals that yield reduction and cyclization products from
alcohol precursors. The bromination of alcohols seems to
operate through initial photolysis of a C–Br bond in CBr4
and proceeds through SN-type displacement of an activated
intermediate. Application of the method in the context of
natural product synthesis will be reported in due course.
[9]
For reviews on photoredox catalysis in organic Synthesis see:
a) J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev.
2011, 40, 102–113; b) C. K. Prier, D. A. Rankic, D. W. C. Mac-
Millan, Chem. Rev. 2013, 113, 5322–5363; c) D. M. Schultz,
T. P. Yoon, Science 2014, 343, 985-1239176-8; for dehalogena-
tion of activated bromoalkanes, see: d) J. M. R. Narayanam,
J. W. Tucker, C. R. J. Stephenson, J. Am. Chem. Soc. 2009, 131,
8756–8757; for recent examples of selected topics in photo-
redox catalysis, see: e) R. S. Andrews, J. J. Becker, M. R.
Gagné, Angew. Chem. Int. Ed. 2012, 51, 4140–4143; Angew.
Chem. 2012, 124, 4216–4219; f) M. Nakajima, Q. Lefebvre, M.
Rueping, Chem. Commun. 2014, 50, 3619–3622; g) S. P. Pitre,
C. D. McTiernan, H. Ismaili, J. C. Scaiano, ACS Catal. 2014,
4, 2530–2535; h) D. J. Wilger, J. M. Grandjean, T. R. Lammert,
D. A. Nicewicz, Nature Chem. 2014, 6, 720–726; i) G. Bergon-
zini, C. S. Schindler, C. Wallentin, E. N. Jacobsen, C. R. J. Ste-
phenson, Chem. Sci. 2014, 5, 112–116; j) L. J. Rono, H. G.
Yayla, D. Y. Wang, M. F. Armstrong, R. R. Knowles, J. Am.
Chem. Soc. 2013, 135, 17735–17738; k) J. Du, K. L. Skubi,
D. M. Schultz, T. P. Yoon, Science 2014, 344, 392–396; l) C.
Cassani, G. Bergonzini, C. Wallentin, Org. Lett. 2014, 16,
4228–4231; m) B. Sahoo, M. N. Hopkinson, F. Glorius, J. Am.
Chem. Soc. 2013, 135, 5505–5508; n) J. C. Tellis, D. N. Primer,
G. A. Molander, Science 2014, 345, 433–436; o) Z. Zuo, D. T.
Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. C. Mac-
Millan, Science 2014, 345, 437–440; p) J. W. Beatty, C. R. J. Ste-
phenson, J. Am. Chem. Soc. 2014, 136, 10270–10273; q) E. Ar-
ceo, I. D. Jurberg, A. Álvarez-Fernández, P. Melchiorre, Nature
Chem. 2013, 5, 750–756.
Acknowledgments
The authors thank the Natural Sciences and Engineering Research
Council (NSERC) (for Accelerator, Discovery, and CREATE
grants to L. B.) and the University of Ottawa (for a University
Research Chair to L. B.) for support of this research. Acknowledg-
ment is also made to the donor of the American Chemical Society
Petroleum Research Fund for support of this research. T. M. and
M. M. thank NSERC (CREATE on medicinal chemistry and
biopharmaceutical development). We also thank Michel Grenier
and Prof. Tito Scaiano for insightful discussions.
[10]
[11]
R. Appel, Angew. Chem. Int. Ed. Engl. 1975, 14, 801–811; An-
gew. Chem. 1975, 87, 863–874.
C. Dai, J. M. R. Narayanam, C. R. J. Stephenson, Nature
Chem. 2011, 3, 140–145.
84
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 81–85