Journal of the American Chemical Society
COMMUNICATION
through complexation of T1 X with the starting material. This
S. E.; Wilson, T. W. Synlett 2010, 1723. (o) Denmark, S. E.; Beutner,
G. L. Angew. Chem., Int. Ed. 2008, 47, 1560.
3
would lead to diastereomeric matched and mismatched combi-
nations in the transition states (Scheme 8). A full mechanistic
investigation is in progress.
(5) (a) House, H. O. J. Am. Chem. Soc. 1955, 77, 3070. (b) Naqvi,
S. M.; Horwitz, J. P.; Filler, R. J. Am. Chem. Soc. 1957, 79, 6283. (c)
Meinwald, J.; Labana, S. S.; Chadha, M. S. J. Am. Chem. Soc. 1963,
85, 582. (d) Rickborn, B.; Gerkin, R. M. J. Am. Chem. Soc. 1968, 90, 4193.
(e) Rickborn, B.; Gerkin, R. M. J. Am. Chem. Soc. 1971, 93, 1693.
(6) (a) Kulasegaram, S.; Kulawiec, R. J. J. Org. Chem. 1994, 59, 7195.
(b) Kulasegaram, S.; Kulawiec, R. J. J. Org. Chem. 1997, 62, 6547.
(7) (a) Anderson, A. M.; Blazek, J. M.; Garg, P.; Payne, B. J.; Mohan,
R. S. Tetrahedron Lett. 2000, 41, 1527. (b) Bhatia, K. A.; Eash, K. J.;
Leonard, N. M.; Oswald, M. C.; Mohan, R. S. Tetrahedron Lett. 2001,
42, 8129.
(8) Karame, I.; Tommasino, M. L.; Lemaire, M. Tetrahedron Lett.
2003, 44, 7687.
(9) Ranu, B. C.; Jana, U. J. Org. Chem. 1998, 63, 8212.
(10) Martínez, F.; del Campo, C.; Llama, E. F. J. Chem. Soc., Perkin
Trans. 1 2000, 1749.
We have shown that Lewis acid catalysis can be combined with
(thio)urea catalysis, as exemplified by the novel catalyst T1 A
3
that enables the stereospecific rearrangement of trisubstituted
epoxides to quaternary aromatic carbaldehydes. A natural exten-
sion of this work is the use of chiral thio(urea) derivatives and the
application to enantioselective reactions.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
spectroscopic data for new compounds. This material is available
(11) Procopio, A.; Dalpozzo, R.; De Nino, A.; Nardi, M.; Sindona,
G.; Tagarelli, A. Synlett 2004, 2633.
’ AUTHOR INFORMATION
(12) (a) Suda, K.; Baba, K.; Nakajima, S.-i.; Takanami, T. Tetrahe-
dron Lett. 1999, 40, 7243. (b) Suda, K.; Baba, K.; Nakajima, S.-i.;
Takanami, T. Chem. Commun. 2002, 2570. (c) Ert€urk, E.; G€oll€u, M.;
Demir, A. S. Tetrahedron 2010, 66, 2373.
Corresponding Author
(13) (a) Robinson, M. W. C.; Pillinger, K. S.; Graham, A. E.
Tetrahedron Lett. 2006, 47, 5919. (b) Robinson, M. W. C.; Pillinger,
K. S.; Mabbett, I.; Timms, D. A.; Graham, A. E. Tetrahedron 2010,
66, 8377.
(14) Ishihara, K.; Hanaki, N.; Yamamoto, H. Synlett 1995, 721.
(15) (a) Maruoka, K.; Murase, N.; Bureau, R.; Ooi, T.; Yamamoto,
H. Tetrahedron 1994, 50, 3663. (b) Maruoka, K.; Ooi, T.; Yamamoto, H.
J. Am. Chem. Soc. 1989, 111, 6431.
’ ACKNOWLEDGMENT
This work was supported by the Alexander-von-Humboldt
Foundation (fellowship to R.H.). M.B. and B.S. acknowledge
financial support by the Hessian Ministry of Science and Arts
(HMWK) through LOEWE Focus “AmbiProbe“.
’ REFERENCES
(16) (a) Suda, K.; Kikkawa, T.; Nakajima, S.-i.; Takanami, T. J. Am.
Chem. Soc. 2004, 126, 9554. (b) Suda, K.; Nakajima, S.-i.; Satoh, Y.;
Takanami, T. Chem. Commun. 2009, 1255.
(1) (a) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289. (b) Connon,
S. J. Chem.—Eur. J. 2006, 12, 5418. (c) Taylor, M. S.; Jacobsen, E. N.
Angew. Chem., Int. Ed. 2006, 45, 1520. (d) Doyle, A. G.; Jacobsen, E. N.
Chem. Rev. 2007, 107, 5713. (e) Zhang, Z. G.; Schreiner, P. R. Chem. Soc.
Rev. 2009, 38, 1187.
(17) While Siddiqi et al. suggested that related complexes were
isolable (see: Siddiqi, K. S.; Khan, N. H.; Kureshy, R. I.; Tabassum, S.;
Zaidi, S. A. A. Indian J. Chem. 1987, 26A, 495), we were unable to isolate
our catalysts. It should be noted, however, that those authors used
ethanolic solutions for the preparation of the adducts. It is hard to
imagine that the alcoholates of the respective metals would not form.
Second, the IR data given in this paper for the fingerprint region at
450ꢀ425 cmꢀ1 do not agree with literature data for SiꢀN bond
stretches, which should be at around 600 and 800 cmꢀ1 (see: B€urger,
H.; Sawodny, W. Spectrochim. Acta 1967, 23A, 2827). For our com-
plexes, we computed these absorptions to be 591.9, 609.9, 858.0, and
885.9 cmꢀ1 [at the B3LYP/6-31þG(d,p) level], in agreement with the
literature.
(2) (a) Myers, A. G.; Kephart, S. E.; Chen, H. J. Am. Chem. Soc. 1992,
114, 7922. (b) Denmark, S. E.; Griedel, B. D.; Coe, D. M.; Schnute, M. E.
J. Am. Chem. Soc. 1994, 116, 7026. (c) Matsumoto, K.; Oshima, K.;
Utimoto, K. J. Org. Chem. 1994, 59, 7152. (d) Kinnaird, J. W. A.; Ng,
P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002,
124, 7920. (e) Berger, R.; Rabbat, P. M. A.; Leighton, J. L. J. Am. Chem.
Soc. 2003, 125, 9596. (f) Kubota, K.; Leighton, J. L. Angew. Chem., Int.
Ed. 2003, 42, 946. (g) Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem.
Soc. 2004, 126, 5686. (h) Kubota, K.; Hamblett, C. L.; Wang, X.;
Leighton, J. L. Tetrahedron 2006, 62, 11397. (i) Lee, S. K.; Tambar,
U. K.; Perl, N. R.; Leighton, J. L. Tetrahedron 2010, 66, 4769. (j) Tambar,
U. K.; Lee, S. K.; Leighton, J. L. J. Am. Chem. Soc. 2010, 132, 10248.
(3) Dilman, A. D.; Ioffe, S. L. Chem. Rev. 2003, 103, 733.
(4) (a) Kobayashi, S.; Nishio, K. J. Org. Chem. 1994, 59, 6620. (b)
Denmark, S. E.; Wynn, T. J. Am. Chem. Soc. 2001, 123, 6199. (c)
Denmark, S. E.; Wynn, T.; Beutner, G. L. J. Am. Chem. Soc. 2002,
124, 13405. (d) Malkov, A. V.; Orsini, M.; Pernazza, D.; Muir, K. W.;
Langer, V.; Meghani, P.; Kocˇovskꢀy, P. Org. Lett. 2002, 4, 1047. (e)
Denmark, S. E.; Beutner, G. L. J. Am. Chem. Soc. 2003, 125, 7800. (f)
Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2003, 125, 7825. (g)
Kobayashi, S.; Ogawa, C.; Konishi, H.; Sugiura, M. J. Am. Chem. Soc.
2003, 125, 6610. (h) Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate,
M. D. J. Am. Chem. Soc. 2005, 127, 3774. (i) Malkov, A. V.; Stewart-
Liddon, A. J. P.; Ramírez-Lꢀopez, P.; Bendova, L.; Haigh, D.; Kocˇovskꢀy,
P. Angew. Chem., Int. Ed. 2006, 45, 1432. (j) Denmark, S. E.; Heemstra,
J. R. J. Org. Chem. 2007, 72, 5668. (k) Denmark, S. E.; Chung, W. J.
J. Org. Chem. 2008, 73, 4582. (l) Malkov, A. V.; Ramírez-Lꢀopez, P.;
Biedermannovꢀa, L.; Rulísˇek, L.; Dufkovꢀa, L.; Kotora, M.; Zhu, F. J.;
Kocovsky, P. J. Am. Chem. Soc. 2008, 130, 5341. (m) Hrdina, R.; Opekar,
F.; Roithovꢀa, J.; Kotora, M. Chem. Commun. 2009, 2314. (n) Denmark,
(18) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456.
(19) Harrington-Frost, N.; Leuser, H.; Calaza, M. I.; Kneisel, F. F.;
Knochel, P. Org. Lett. 2003, 5, 2111. It should be noted that structure
(S)-2d is the same as structure 15 in this reference. Shi has argued that
the “backside” (“spiro”) reaction mode in such epoxide rearrangements
can be followed back to the opposite configurations in the starting
epoxides; similar substrates were utilized in ref 20. To be sure, we also
rearranged enantiomerically enriched 1b with Et2AlCl (Scheme 7) and
obtained the S-configured product.
(20) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am.
Chem. Soc. 1997, 119, 11224.
(21) Shen, Y.-M.; Wang, B.; Shi, Y. Angew. Chem., Int. Ed. 2006,
45, 1429.
(22) Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249.
7627
dx.doi.org/10.1021/ja110685k |J. Am. Chem. Soc. 2011, 133, 7624–7627