Journal of Medicinal Chemistry
ARTICLE
(3) (a) Berman, J. Chemotherapy of Chagas’ disease: status and new
developments. Curr. Opin. Infect. Dis. 2003, 16, 397–401. (b) Guerin,
P. J.; Olliaro, P.; Sundar, S.; Boelaert, M.; Croft, S. L.; Desjeux, P.;
Wasunna, K.; Bryceson, A. D. M. Visceral leishmaniasis: current status of
control, diagnosis, and treatment, and a proposed research and devel-
opment agenda. Lancet Infect. Dis. 2002, 2, 494–501. (c) Rosenthal, E.;
Marty, P. Recent understanding of the treatment of visceral leishma-
niasis. J. Postgrad. Med. 2003, 49, 61–68. (d) Siqueira-Neto, J. L.; Song,
O. R.; Oh, H.; Sohn, J. H.; Yang, G.; Nam, J.; Jang, J.; Cechetto, J.; Lee,
C. B.; Moon, S.; Genovesio, A.; Chatelain, E.; Christophe, T.; Freitas-
Junior, L. H. Antileishmanial high-throughput drug screening reveals
drug candidates with new scaffolds. PLoS Neglected Trop. Dis. 2010,
4, No. e675.
3-arylquinoxaline-2-carbonitrile di-N-oxides. Bioorg. Med. Chem. Lett.
2010, 20, 4831–4835.
(6) (a) Zarranz, B.; Jaso, A.; Aldana, I.; Monge, A. Synthesis and
anticancer activity evaluation of new 2-alkylcarbonyl and 2-benzoyl-3-
trifluoromethyl-quinoxaline 1,4-di-N-oxide derivatives. Bioorg. Med.
Chem. 2004, 12, 3711–3721. (b) Vicente, E.; Charnaud, S.; Bongard,
E.; Villar, R.; Burguete, A.; Solano, B.; Ancizu, S.; Pꢀerez-Silanes, S.;
Aldana, I.; Vivas, L.; Monge, A. Synthesis and antiplasmodial activity of
3-furyl and 3-thienylquinoxaline-2-carbonitrile 1,4-di-N-oxide deriva-
tives. Molecules 2008, 13, 69–77. (c) Moreira Lima, L.; Vicente, E.;
Solano, B.; Pꢀerez-Silanes, S.; Aldana, I.; Monge, A. Unexpected reduc-
tion of ethyl 3-phenylquinoxaline-2-carboxylate 1,4-di-N-oxide deriva-
tives by amines. Molecules 2008, 13, 78–85. (d) Vicente, E.; Villar, R.;
Burguete, A.; Solano, B.; Ancizu, S.; Pꢀerez-Silanes, S.; Aldana, I.; Monge,
A. Substitutions of fluorine atoms and phenoxy groups in the synthesis of
quinoxaline 1,4-di-N-oxide derivatives. Molecules 2008, 13, 86–95.
(7) (a) Faucher, J. F.; Baltz, T.; Petry, K. G. Detection of an
“epimastigote-like” intracellular stage of Trypanosoma cruzi. Parasitol.
Res. 1995, 81, 441–443. (b) Almeida-de-Faria, M.; Freymuller, E.; Colli,
W.; Alves, M. J. Trypanosoma cruzi: characterization of an intracellular
epimastigote-like form. Exp. Parasitol. 1999, 92, 263–274.
(8) (a) Filardi, L. S.; Brener, Z. Susceptibility and natural resistance
of Trypanosoma cruzi strains to drugs used clinically in Chagas’ disease.
Trans. R. Soc. Trop. Med. Hyg. 1987, 81, 755–759. (b) Molina, J.; Brener,
Z.; Romanha, A. J.; Urbina, J. A. In vivo activity of the bis-triazole D0870
against drug-susceptible and drug-resistant strains of the protozoan
parasite Trypanosoma cruzi. J. Antimicrob. Chem. 2000, 46, 137–140.
(9) Muelas-Serrano, S.; Nogal-Ruiz, J. J.; Gꢀomez-Barrio, A. Setting of
a colorimetric method to determine the viability of Trypanosoma cruzi
epimastigotes. Parasitol. Res. 2000, 86, 999–1002.
(10) (a) Sereno, D.; Lemesre, J.-L. Use of an enzymatic micro-
method to quantify amastigote stage of Leishmania amazonensis in vitro.
Parasitol. Res. 1997, 83, 401–403. (b) Dutta, A.; Bandyopadhyay, S.;
Mandal, C.; Chatterjee, M. Development of a modified MTT assay for
screening antimonial resistant field isolates of Indian visceral leishma-
niasis. Parasitol. Int. 2005, 54, 119–122.
(11) (a) Porcal, W.; Hernꢀandez, P.; Boiani, L.; Boiani, M.; Ferreira,
A.; Chidichimo, A.; Cazzulo, J. J.; Olea-Azar, C.; Gonzꢀalez, M.;
Cerecetto, H. New trypanocidal hybrid compounds from the association
of hydrazone moieties and benzofuroxan heterocycle. Bioorg. Med.
Chem. 2008, 16, 6995–7004. (b) Gerpe, A.; Boiani, L.; Hernꢀandez, P.;
Sortino, M.; Zacchino, S.; Gonzꢀalez, M.; Cerecetto, H. Naftifine-
analogues as anti-Trypanosoma cruzi agents. Eur. J. Med. Chem. 2010,
45, 2154–2164.
(4) (a) Montoya, M. E.; Sainz, Y.; Ortega, M. A.; Loꢀpez De Cerꢀain,
A.; Monge, A. Synthesis and antituberculosis activity of some new
2-quinoxalinecarbonitriles. Farmaco 1998, 53, 570–573. (b) Cerecetto,
H.; Di Maio, R.; Gonzꢀalez, M.; Risso, M.; Saenz, P.; Seoane, G.;
Denicola, A.; Peluffo, G.; Quijano, C.; Olea-Azar, C. 1,2,5,-Oxadiazole
N-oxide derivatives and related compounds as potential antitrypanoso-
mal drugs: structureꢀactivity relationships. J. Med. Chem. 1999,
42, 1941–1950. (c) Ortega, M. A.; Montoya, M. E.; Jaso, A.; Zarranz,
B.; Tirapu, I.; Aldana, I.; Monge, A. Antimycobacterial activity of new
quinoxaline-2-carbonitrile and quinoxaline-2-carbonitrile 1,4-di-N-oxide
derivatives. Pharmazie 2001, 56, 205–207. (d) Zarranz, B.; Jaso, A.;
Aldana, I.; Monge, A. Synthesis and antimycobacterial activity of new
quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Bioorg. Med.
Chem. 2003, 11, 2149–2156. (e) Aldana, I.; Ortega, M. A.; Jaso, A.;
Zarranz, B.; Oporto, P.; Gimꢀenez, A.; Monge, A.; Deharo, E. Anti-
malarial activity of some 7-chloro-2-quinoxalinecarbonitrile-1,4-di-
N-oxide derivatives. Pharmazie 2003, 58, 68–69. (f) Jaso, A.; Zarranz, B.;
Aldana, I.; Monge, A. Synthesis of new 2-acetyl and 2-benzoyl quinoxa-
line 1,4-di-N-oxide derivatives as anti-Mycobacterium tuberculosis agents.
Eur. J. Med. Chem. 2003, 38, 791–800. (g) Jaso, A.; Zarranz, B.; Aldana,
I.; Monge, A. Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide
derivatives as anti-Mycobacterium tuberculosis agents. J. Med. Chem. 2005,
48, 2019–2025. (h) Marin, A.; Moreira Lima, L.; Solano, B.; Vicente, E.;
Pꢀerez Silanes, S.; Maurel, S.; Sauvain, M.; Aldana, I.; Monge, A.; Deharo,
E. Antiplasmodial structureꢀactivity relationship of 3-trifluoromethyl-
2-arylcarbonylquinoxaline 1,4-di-N-oxide derivatives. Exp. Parasitol.
2008, 118, 25–31. (i) Vicente, E.; Moreira Lima, L.; Bongard, E.;
Charnaud, S.; Villar, R.; Solano, B.; Burguete, A.; Perez-Silanes, S.;
Aldana, I.; Vivas, L.; Monge, A. Synthesis and structureꢀactivity
relationship of 3-phenylquinoxaline 1,4-di-N-oxide derivatives as anti-
malarial agents. Eur. J. Med. Chem. 2008, 43, 1903–1910. (j) Vicente, E.;
Villar, R.; Burguete, A.; Solano, B.; Pꢀerez-Silanes, S.; Aldana, I.; Maddry,
J. A.; Lenaerts, A. J.; Franzblau, S. G.; Cho, S. H.; Monge, A.; Goldman,
R. C. Efficacy of quinoxaline-2-carboxylate 1,4-di-N-oxide derivatives in
experimental tuberculosis. Antimicrob. Agents Chemother. 2008,
52, 3321–3326. (k) Vicente, E.; Pꢀerez-Silanes, S.; Lima, L. M.; Ancizu,
S.; Burguete, A.; Solano, B.; Villar, R.; Aldana, I.; Monge, A. Selective
activity against Mycobacterium tuberculosis of new quinoxaline 1,4-di-
N-oxides. Bioorg. Med. Chem. 2009, 17, 385–389. (l) Ancizu, S.; Moreno, E.;
Solano, B.; Villar, R.; Burguete, A.; Torres, E.; Pꢀerez-Silanes, S.; Aldana,
I.; Monge, A. New 3-methylquinoxaline-2-carboxamide 1,4-di-N-oxide
derivatives as anti-Mycobacterium tuberculosis agents. Bioorg. Med. Chem.
2010, 18, 2713–2719.
(12) Maron, D. M.; Ames, B. N. Revised methods for the Salmonella
mutagenicity test. Mutat. Res. 1983, 113, 173–215.
(13) Chu, K. C.; Patel, K. M.; Lin, A. H.; Tarone, R. E.; Linhart,
M. S.; Dunkel, V. C. Evaluating statistical analyses and reproducibility of
microbial mutagenicity assays. Mutat. Res. 1981, 85, 119–132.
(14) Junnotula, V.; Rajapakse, A.; Arbillaga, L.; Loꢀpez de Cerain, A.;
Solano, B.; Villar, R.; Monge, A.; Gates, K. S. DNA strand cleaving
properties and hypoxia-selective cytotoxicity of 7-chloro-2-thienylcar-
bonyl-3-trifluoromethylquinoxaline 1,4-dioxide. Bioorg. Med. Chem.
2010, 18, 3125–3132.
(15) Boiani, M.; Cerecetto, H.; Gonzꢀalez, M.; Gasteiger, J. Modeling
anti-Trypanosoma cruzi activity of N-oxide containing heterocycles.
J. Chem. Inf. Model. 2008, 48, 213–219.
(5) (a) Aguirre, G.; Cerecetto, H.; Di Maio, R.; Gonzꢀalez, M.;
Montoya Alfaro, M. E.; Jaso, A.; Zarranz, B.; Ortega, M. A.; Aldana, I.;
Monge-Vega, A. Quinoxaline N,N0-dioxide derivatives and related
compounds as growth inhibitors of Trypanosoma cruzi. Structureꢀactiv-
ity relationships. Bioorg. Med. Chem. Lett. 2004, 14, 3835–3839. (b)
Ancizu, S.; Moreno, E.; Torres, E.; Burguete, A.; Pꢀerez-Silanes, S.;
Benítez, D.; Villar, R.; Solano, B.; Marin, A.; Aldana, I.; Cerecetto, H.;
Gonzꢀalez, M.; Monge, A. Heterocyclic-2-carboxylic acid (3-cyano-1,4-
di-N-oxidequinoxalin-2-yl)amide derivatives as hits for the development
of neglected disease drugs. Molecules 2009, 14, 2256–2272. (c) Vicente,
E.; Duchowicz, P. R.; Benítez, D.; Castro, E. A.; Cerecetto, H.;
Gonzꢀalez, M.; Monge, A. Anti-T. cruzi activities and QSAR studies of
(16) (a) Boiani, L.; Aguirre, G.; Gonzꢀalez, M.; Cerecetto, H.;
Chidichimo, A.; Cazzulo, J. J.; Bertinaria, M.; Guglielmo, S. Furoxan-,
alkylnitrate-derivatives and related compounds as antitrypanosomatid
agents: mechanism of action studies. Bioorg. Med. Chem. 2008,
16, 7900–7907. (b) Boiani, M.; Piacenza, L.; Hernꢀandez, P.; Boiani, L.;
Cerecetto, H.; Gonzꢀalez, M.; Denicola, A. Mode of action of nifurtimox and
N-oxide-containing heterocycles against Trypanosoma cruzi: Is oxidative
stress involved?. Biochem. Pharmacol. 2010, 79, 1736–1745.
(17) Maarouf, M.; De Kouchkovsky, Y.; Brown, S.; Petit, P. X.;
Robert-Gero, M. In vivo interference of paromomycin with mitochon-
drial activity of Leishmania. Exp. Cell Res. 1997, 232, 339–348.
3635
dx.doi.org/10.1021/jm2002469 |J. Med. Chem. 2011, 54, 3624–3636