Journal of the American Chemical Society
ARTICLE
prior reports.33 In addition, neither host 1 or 2 facilitates the
photoisomerization of trans-β-methyl styrene (Supporting In-
formation), a reaction known to require a low energy triplet
sensitizer.34 These experiments along with the solid-state emis-
sion spectra suggest that the production of the anti-HH photo-
dimer is not due to triplet sensitization by a single host molecule
and may be due to encapsulation within the larger assembly.
In summary, we report the synthesis and self-assembly of a
macrocyclic bis-urea that contains a much larger phenylethyny-
lene spacer unit. Despite its increased size, this bis-urea macro-
cycle still assembles in high fidelity to give columnar structures
that pack into porous crystalline materials. The porosity of these
new materials was demonstrated by gas adsorption studies and by
the absorption of coumarin guests from solution. Modeling
studies including Monte Carlo searching of the conformer distribu-
tions at ground state with molecular mechanics (MMFF) using
Spartan did not afford good predictions about the selectivity of the
subsequent photoreaction; however, they did suggest that the
coumarin binds in pairs through advantageous aryl stacking interac-
tions with the interior of the columns and that the pairs of coumarins
have room to move within the channel. We demonstrated the utility
of this new porous framework as a confined environment for
reactions with the solid-state photodimerization of coumarin within
Energy, Office of Energy Sciences Materials Sciences Division,
under contract DE-AC02-05CH11231.
’ REFERENCES
(1) (a) Vriezema, D. M.; Aragones, M. C.; Elemans, J. A. A. W.;
Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Chem. Rev. 2005,
105, 1445–1489. (b) Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Chem.
Soc. Rev. 2008, 37, 247–262.
(2) (a) Tung, C. H.; Wu, L. Z.; Zhang, L. P.; Chen, B. Acc. Chem. Res.
2003, 36, 39–47. (b) Yang, Q.; Han, D.; Yang, H.; Li, C. Chem.ꢀAsian
J. 2008, 3, 1214–1229.
(3) (a) Fukuda, T.; Yamauchi, S.; Honda, Z. Opt. Mater. 2009, 32,
207–211. (b) Crescimbeni, M. C.; Nolan, V.; Clop, P. D.; Marin, G. N.;
Perillo, M. A. Colloids Surf., A 2010, 76, 387–396. (c) Kin, E.; Fukuda, T.;
Yamauchi, S.; Honda, Z.; Ohara, H.; Yokoo, T.; Kijima, N.; Kamata, N.
J. Alloys Compd. 2009, 480, 908–911. (d) Gill, I.; Ballesteros, A. J. Am.
Chem. Soc. 1998, 120, 8587–8598.
(4) (a) Murase, F.; Horiuchi, S.; Fujita, M. J. Am. Chem. Soc. 2010,
132, 2866–2867. (b) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew.
Chem., Int. Ed. 2009, 48, 3418–3438. (c) Iwasawa, T.; Hooley, R. J.;
Rebek, J., Jr. Science 2007, 317, 493–496. (d) Ziegler, M.; Brumaghim,
J. L.; Raymond, K. N. Angew. Chem., Int. Ed. 2000, 39, 4119–4121.
(e) Iwasawa, T.; Mann, E.; Rebek, J. J. Am. Chem. Soc. 2006, 128,
9308–9309. (f) Fiedler, D.; Bergman, R. G.; Raymond, K. N. Angew.
Chem., Int. Ed. 2004, 43, 6748–6751. (g) Yoshizawa, M.; Kusukawa, T.;
Fujita, M.; Yamaguchi, K. J. Am. Chem. Soc. 2000, 129, 6311–6312.
(h) Chen, J.; Rebek, J., Jr. Org. Lett. 2002, 4, 327–329. (i) Mal, P.;
Breiner, B.; Rissanen, K.; Nitschke, J. R. Science 2009, 324, 1697–1699.
(j) Butterfield, S. M.; Rebek, J., Jr. Chem. Commun. 2007, 1605–1607.
(k) Sato, S.; Iida, J.; Suzuki, K.; Kawano, M.; Ozeki, T.; Fujita, M. Science
2006, 313, 1273–1275. (l) Cram, D. J.; Tanner, M. E.; Thomas, R.
Angew. Chem., Int. Ed. Engl. 1991, 30, 1024–1027. (m) Yoshizawa, M.;
Fujita, M. Pure Appl. Chem. 2005, 77, 1107–1112.
(5) (a) Lakshminarasimhan, P.; Thomas, K. J.; Brancaleon, L.;
Wood, P. D.; Johnston, L. J.; Ramamurthy, V. J. Phys. Chem. B 1999,
103, 9247–9254. (b) Jayathirtha, R. V.; Prevost, N.; Ramamurthy, V.;
Kojima, M.; Johnston, L. J. Chem. Commun. 1997, 22, 2209–2210.
(6) (a) Yoshizawa, M.; Tamura, M.; Fujita, M. J. Am. Chem. Soc.
2004, 126, 6846–6847. (b) Pluth, M. D.; Bergman, R. G.; Raymond,
K. N. Science 2007, 316, 85–87. (c) Sato, S.; Iida, J.; Suzuki, K.; Ozeki, T.;
Fujita, M. Science 2007, 313, 1273–1276. (d) Murase, T.; Sato, S.; Fujita,
M. Angew. Chem., Int. Ed. 2007, 46, 1083–1085. (e) Kawano, M.;
Kobayashi, Y.; Ozeki, T.; Fujita, M. J. Am. Chem. Soc. 2006, 128,
6558–6559. (f) Dong, V. M.; Fiedler, D.; Carl, B.; Bergman, R. G.;
Raymond, K. N. J. Am. Chem. Soc. 2006, 128, 14464–14465. (g) Rebek,
J., Jr.; Ajami, D. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 16000–16003.
(h) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Science 2007,
316, 85–88. (i) Pluth, M. D.; Fiedler, D.; Mugridge, J. S.; Bergman, R. G.;
Raymond, K. N. Proc. Natl. Acad. Sci. U.S.A. 2009, 26, 10438–10443.
(j) Balomenou, I.; Pistolis, G. J. Phys. Chem. B 2010, 114 (2), 780–785.
(k) Yoshizawa, M.; Kusukawa, T.; Fujita, M.; Yamaguchi, K. J. Am. Chem. Soc.
2000, 122, 6311–6312.
the solid hostꢀguest complex. UV-irradiation of host 1 coumarin
3
afforded the anti-HH coumarin photodimer with unusually high
selectivity. Longer UV-irradiation times resulted in higher conversion,
in contrast to what is typically observed in solid-state photoreaction of
coumarin, which gives limited conversion due to the photoreversion
of the photodimer to coumarin. We are currently exploring the uptake
and subsequent photoreaction of larger coumarin and stilbene
derivatives that may be better matched to the size and shape of the
channel. We are also investigating the crystallization of host 1 in the
presence of coumarin to see if we can grow crystalline inclusion
complexes suitable for X-ray crystallography. Such structural char-
acterization will help to evaluate the accuracy of our molecular
models. X-ray analysis of such inclusion crystals after intervals of
UV-irradiation might reveal the course of events between light
absorption and guest reaction and help to determine the origin of
the observed selectivity.
’ ASSOCIATED CONTENT
S
Supporting Information. Synthesis and characterization
b
of host 1 and its inclusion complexes; photochemical reaction of
coumarin in the presence and absence of host 1, and X-ray
crystallographic files in CIF format for 1. This material is available
(7) (a) Chretien,M.N.Pure Appl. Chem. 2007,79,1–20. (b) Hashimoto,
S. J. Photochem. Photobiol., C 2003,4,19–49.(b)Garcia,H.;Roth,H.D.Chem.
Rev. 2002, 102, 3947–4007. (c) Yoon, K. B. Chem. Rev. 1993, 93, 321–339.
(8) Shimizu, L. S.; Smith, M. D.; Hughes, A. D.; Shimizu, K. D. Chem.
Commun. 2001, 1592–1593.
’ AUTHOR INFORMATION
Corresponding Author
(9) (a) Yang, J.; Dewal, M. B.; Shimizu, L. S. J. Am. Chem. Soc. 2006,
128, 8122–8123. (b) Yang, J.; Dewal, M. B.; Profeta, S.; Smith, M. D.; Li,
Y.; Shimizu, L. S. J. Am. Chem. Soc. 2008, 130, 612–621. (c) Dewal, M. B.;
Xu, Y.; Yang, J.; Mohammed, F.; Smith, M. D.; Shimizu, L. S. Chem.
Commun. 2008, 3909–3911.
(10) (a) Feng, X.; Liu, L.; Wang, S.; Zhu, D. Chem. Soc. Rev. 2010,
39, 241102419. (b) Dore, K.; Leclerc, M.; Boudreau, D. J. Fluoresc. 2006,
16, 259–265.
’ ACKNOWLEDGMENT
The authors gratefully acknowledge support for this work
from the NSF (CHE-0718171 and CHE-1012298). Synchrotron
data were collected through the SCrALS (Service Crystallogra-
phy at Advanced Light Source) program at Beamline 11.3.1 at the
Advanced Light Source (ALS), Lawrence Berkeley National
Laboratory. The ALS is supported by the U.S. Department of
(11) (a) Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007,
107, 1339–1386. (b) Pecher, J.; Mecking, S. Chem. Rev. 2010,
7031
dx.doi.org/10.1021/ja110779h |J. Am. Chem. Soc. 2011, 133, 7025–7032