Journal of Medicinal Chemistry
Article
molecular target for cancer therapy. Apoptosis 2009, 14, 348−363.
(e) Odoux, C.; Fohrer, H.; Hoppo, T.; Guzik, L.; Stolz, D. B.; Lagasse, E.
A. Stochastic model for cancer stem cell origin in metastatic colon
cancer. Cancer Res. 2008, 68, 6932−6941. (f) Savona, M.; Talpaz, M.
Nat. Rev. Cancer 2008, 8, 341−350. (g) Rossi, D. J.; Jamieson, C. H. M.;
Weissman, I. L. Getting to the stem of chronic myeloid leukaemia. Cell
2008, 132, 681−696.
ABBREVIATIONS USED
■
CSC, cancer stem cell; PTL, parthenolide; SL, sesquiterpene
lactone; SERCA, sarco/endoplasmic reticulum calcium transport
ATPase; LSC, leukemia stem cell; BCSC, breast cancer
stem cell; GSL, guaianolide sesquiterpene lactone; DMAPT,
(dimethylamino)parthenolide; MCL, micheliolide; DMAMCL,
(dimethylamino)micheliolide; NOD/SCID, nonobese diabetic/
severe combined immunodeficiency; DOX, doxorubicin; HSC,
hematopoietic stem/progenitor cell; CFU, colony-forming unit;
AUMC, area under the first moment of the plasma
concentration−time curve; MRT, mean retention time, MRT =
AUMC/AUC; CL, total body clearance
(4) (a) Gupta, P. B.; Onder, T. T.; Jiang, G.; Tao, K.; Kuperwasser, C.;
Weinberg, R. A.; Lander, E. S. Identification of selective inhibitors of
cancer stem cells by high- throughput screening. Cell 2009, 138, 645−
659. (b) Bao, S.; Wu, Q.; McLendon, R. E.; Hao, Y.; Shi, Q.; Hjelmeland,
A. B.; Dewhirst, M. W.; Bigner, D. D.; Rich, J. N. Glioma stem cells
promote radioresistance by preferential activation of the DNA damage
response. Nature 2006, 444, 756−760. (c) Dean, M.; Fojo, T.; Bates, S.
Tumour stem cells and drug resistance. Nat. Rev. Cancer 2005, 5, 275−
284. (d) Diehn, M.; Clarke, M. F. Cancer stem cells and radiotherapy:
new insights into tumor radioresistance. J. Natl. Cancer Inst. 2006, 98,
1755−1757. (e) Eyler, C. E.; Rich, J. N. Survival of the fittest: cancer
stem cells in therapeutic resistance and angiogenesis. J. Clin. Oncol. 2008,
26, 2839−2845. (f) Li, X.; Lewis, M. T.; Huang, J.; Gutierrez, C.;
Osborne, C. K.; Wu, M. F.; Hilsenbeck, S. G.; Pavlick, A.; Zhang, X.;
Chamness, G. C.; Wong, H.; Rosen, J.; Chang, J. C. Intrinsic resistance
of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst.
2008, 100, 672−679. (g) Woodward, W. A.; Chen, M. S.; Behbod, F.;
Alfaro, M. P.; Buchholz, T. A.; Rosen, J. M. WNT/β-catenin mediates
radiation resistance of mouse mammary progenitor cells. Proc. Natl.
Acad. Sci. U.S.A. 2007, 104, 618−623.
(5) Chakraborty, S.; Kanakasabai, S.; Bright, J. J. Constitutive
androstane receptor agonist CITCO inhibits growth and expansion of
brain tumor stem cells. Br. J. Cancer 2011, 104, 448−459.
(6) Ginestier, C.; Liu, S.; Diebel, M. E.; Korkaya, H.; Luo, M.; Brown,
M.; Wicinski, J.; Cabaud, O.; Charafe-Jauffret, E.; Birnbaum, D.; Guan, J.
L.; Dontu, G.; Wicha, M. CXCR1 blockade selectively targets human
breast cancer stem cells in vitro and in xenografts. S. J. Clin. Invest. 2010,
120, 485−497.
REFERENCES
■
(1) (a) Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.;
Caceres-Cortes, J.; Minden, M.; Paterson, B.; Caligiuri, M. A.; Dick, J. E.
A cell initiating human acute myeloid leukaemia after transplantation
into SCID mice. Nature 1994, 367, 645−648. (b) Bonnet, D.; Dick, J. E.
Human acute myeloid leukemia is organized as a hierarchy that
originates from a primitive hematopoietic cell. Nat. Med. 1997, 3, 730−
737. (c) Stefanachi, A.; Leonetti, F.; Nicolotti, O.; Catto, M.; Pisani, L.;
Cellamare, S.; Altomare, C.; Carotti, A. New strategies in the
chemotherapy of leukemia: eradicating cancer stem cells in chronic
myeloid leukemia. Curr. Cancer Drug Targets 2012, 12, 571−596.
(2) (a) Singh, S. K.; Hawkins, C.; Clarke, I. D.; Squire, J. A.; Bayani, J.;
Hide, T.; Henkelman, R. M.; Cusimano, M. D.; Dirks, P. B. Tissue repair
and stem cell renewal in carcinogenesis. Nature 2004, 432, 396−401.
(b) Singh, S. K.; Clarke, I. D.; Terasaki, M.; Bonn, V. E.; Hawkins, C.;
Squire, J.; Dirks, P. B. Identification of a cancer stem cell in human brain
tumors. Cancer Res. 2003, 63, 5821−5828. (c) Al-Hajj, M.; Wicha, M. S.;
Benito-Hernandez, A.; Morrison, S. J.; Clarke, M. F. Prospective
identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci.
U.S.A. 2003, 100, 3983−3988. (d) O’Brien, C. A.; Pollett, A.; Gallinger,
S.; Dick, J. E. A human colon cancer cell capable of initiating tumour
growth in immunodeficient mice. Nature 2007, 445, 106−110.
(e) Zhang, S.; Balch, C.; Chan, M. W.; Lai, H. C.; Matei, D.; Schilder,
J. M.; Yan, P. S.; Huang, T. H.; Nephew, K. P. Identification and
characterization of ovarian cancer-initiating cells from primary human
tumors. Cancer Res. 2008, 68, 4311−4320. (f) Li, C.; Heidt, D. G.;
Dalerba, P.; Burant, C. F.; Zhang, L.; Adsay, V.; Wicha, M.; Clarke, M. F.;
Simeone, D. M. Identification of pancreatic cancer stem cells. Cancer Res.
2007, 67, 1030−1037. (g) Maitland, N. J.; Collins, A. T. Prostate cancer
stem cells: a new target for therapy. J. Clin. Oncol. 2008, 26, 2862−2870.
(h) Lang, S. H.; Frame, F.; Collins, A. Prostate cancer stem cells. J.
Pathol. 2009, 217, 299−306. (i) Schatton, T.; Murphy, G. F.; Frank, N.
Y.; Yamaura, K.; Waaga-Gasser, A. M.; Gasser, M.; Zhan, Q.; Jordan, S.;
Duncan, L. M.; Weishaupt, C.; Fuhlbrigge, R. C.; Kupper, T. S.; Sayegh,
M. H.; Frank, M. H. Identification of cells initiating human melanomas.
Nature 2008, 451, 345−349. (j) Boiko, A. D.; Razorenova, O. V.; van de
Rijn, M.; Swetter, S. M.; Johnson, D. L.; Ly, D. P.; Butler, P. D.; Yang, G.
P.; Joshua, B.; Kaplan, M. J.; Longaker, M. T.; Weissman, I. L. Human
melanoma-initiating cells express neural crest nerve growth factor
receptor CD271. Nature 2010, 466, 133−137. (k) Schmidt, P.;
Kopecky, C.; Hombach, A.; Zigrino, P.; Mauch, C.; Abken, H. Proc.
Natl. Acad. Sci. U.S.A. 2011, 108, 2474−2479. (l) Civenni, G.; Walter, A.;
Kobert, N.; Mihic-Probst, D.; Zipser, M.; Belloni, B.; Seifert, B.; Moch,
H.; Dummer, R.; van den Broek, M.; Sommer, L. Human CD271-
positive melanoma stem cells associated with metastasis establish tumor
heterogeneity and long-term growth. Cancer Res. 2011, 71, 3098−3109.
(3) (a) Abbott, A. The root of the problem. Nature 2006, 442, 742−
743. (b) Chen, B.; Dodge, M. E.; Tang, W.; Lu., J.; Ma, Z.; Fan, C.-W.;
Wei, S.; Hao, W.; Kilgore, J.; Williams, N. S.; Roth, M. G.; Amatruda, J.
F.; Chen, C.; Lum, L. Small molecule-mediated disruption of Wnt-
dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol.
2009, 5, 100−107. (c) Orkin, S. H.; Zon, L. I. An evolving paradigm for
stem cell biology. Cell 2008, 132, 631−644. (d) Shen, H.-M.;
Tergaonker, V. NFκB signaling in carcinogenesis and as a potential
(7) Zhou, J.; Zhang, H.; Gu, P.; Bai, J.; Margolick, J. B.; Zhang., Y. NF-
κB pathway inhibitors preferentially inhibit breast cancer stem-like cells.
Breast Cancer Res. Treat. 2008, 111, 419−427.
(8) Li, Y.; Zhang, T.; Korkaya, H.; Liu, S.; Lee, H.-F.; Newman, B.; Yu,
Y.; Clouthier, S. G.; Schwartz, S. J.; Wicha, M. S.; Sun, D. Intrinsic
resistance of tumorigenic breast cancer cells to chemotherapy. Clin.
Cancer Res. 2010, 16, 2580−2590.
(9) (a) Guzman, M. L.; Rossi, R. M.; Karnischky, L.; Li, X.; Peterson, D.
R.; Howard, D. S.; Jordan, C. T. The sesquiterpene lactone parthenolide
induces apoptosis of human acute myelogenous leukemia stem and
progenitor cells. Blood 2005, 105, 4163−4169. (b) Guzman, M. L.;
Rossi, R. M.; Neelakantan, S.; Li, X.; Corbett, C. A.; Hassane, D. C.;
Becker, M. W.; Bennett, J. M.; Sullivan, E.; Lachowicz, J. L.; Vaughan, A.;
Sweeney, C. J.; Matthews, W.; Carroll, M.; Liesveld, J. L.; Crooks, P. A.;
Jordan, C. T. An orally bioavailable parthenolide analog selectively
eradicates acute myelogenous leukemia stem and progenitor cells. Blood
2007, 110, 4227−4435. (c) Ghantous, A.; Gali-Muhtasib, H.; Vuorela,
H.; Saliba, N. A.; Darwiche, N. What made sesquiterpene lactones reach
cancer clinical trials? Drug Discovery Today 2010, 15, 668−678. (d) Liu,
Y.; Lu, W. L.; Guo, J.; Du, J.; Li, T.; Wu, J. W.; Wang, G. L.; Wang, J. C.;
Zhang, X.; Zhang, Q. A potential target associated with both cancer and
cancer stem cells: A combination therapy for eradication of breast cancer
using vinorelbine stealthy liposomes plus parthenolide stealthy
liposomes. J. Controlled Release 2008, 129, 18−25. (e) Kawasaki, B.
T.; Hurt, E. M.; Kalathur, M.; Duhagon, M. A.; Milner, J. A.; Kim, Y. S.;
Farrar, W. L. Effects of the sesquiterpene lactone parthenolide on
prostate tumor-initiating cells: An integrated molecular profiling
approach. Prostate 2009, 67, 827−837. (f) Neelakantan, S.; Nasim, S.;
Guzman, M. L.; Jordan, C. T.; Crooks, P. A. Aminoparthenolide as novel
anti-leukemic agents: discovery of the NF-κB inhibitor, DMAPT (LC-
1). Bioorg. Med. Chem. Lett. 2009, 19, 4346−4349. (g) Kevin, P. New
agents for the treatment of leukemia: discovery of DMAPT (LC-1).
Drug Discovery Today 2010, 15, 322.
L
dx.doi.org/10.1021/jm301064b | J. Med. Chem. XXXX, XXX, XXX−XXX