ACS Medicinal Chemistry Letters
LETTER
Funding Sources
(15) De Voss, J. J.; Rutter, K.; Schroeder, B. G.; Su, H.; Zhu, Y.;
Barry, C. E. The salicylate-derived mycobactin siderophores of Myco-
bacterium tuberculosis are essential for growth in macrophages. Proc. Natl.
Acad. Sci. U.S.A. 2000, 97, 1252–1257.
(16) Cho, S. H.; Warit, S.; Wan, B.; Hwang, C. H.; Pauli, G. F.;
Franzblau, S. G. Low-oxygen-recovery assay for high-throughput screen-
ing of compounds against nonreplicating Mycobacterium tuberculosis.
Antimicrob. Agents Chemother. 2007, 51, 1380–1385.
(17) Falzari, K.; Zhou, Z.; Pan, D.; Liu, H.; Hongmanee, P.;
Franzblau, S. G. In Vitro and In Vivo Activities of Macrolide Derivatives
against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2005,
49, 1447–1454.
Funding was provided by NIH AI054193, Dow AgroSciences,
and NSF CHE-0741793. This research was supported in part by
the Intramural Research Program of the NIH, NIAID, and by
Grant 2R01AI054193 from the National Institutes of Health
(NIH) and in part by intermediates provided from Dow Agro-
Sciences. We thank the University of Notre Dame, especially the
Mass Spectrometry and Proteomics Facility (Bill Boggess, Mi-
chelle Joyce, and Nonka Sevova), which is supported by Grant
CHE-0741793 from the NSF.
(18) Pethe, K.; Sequeira, P. C.; Agarwalla, S.; Rhee, K.; Kuhen, K.;
Phong, W. Y.; Patel, V.; Beer, D.; Walker, J. R.; Duraiswamy, J.; Jiricek, J.;
Keller, T. H.; Chatterjee, A.; Tan, M. P.; Ujjini, M.; Roa, S. P. S.;
Camacho, L.; Bifani, P.; Mak, P. A.; Ma, I.; Barnes, S. W. A chemical
genetic screen in Mycobacterium tuberculosis identifies carbon-source-
dependent growth inhibitors devoid of in vivo efficacy. Nature Commun.
2010, 57, 1–8.
(19) Stover, C. K.; Warrener, P.; VanDevanter, D. R.; Sherman,
D. R.; Arain, T. M.; Langhorne, M. H.; Anderson, S. W.; Towell, J. A.;
Yuan, Y.; McMurray, D. N; Kreiswirth, B. N.; Barry, C. E.; Baker, W. R. A
small-molecule nitroimidazopyran drug candidate for the treatment of
tuberculosis. Nature 2000, 405, 962–966.
(20) Jeon, C. Y.; Hwang, S. H.; Min, J. H.; Prevots, D. R.; Goldfeder,
L. C.; Lee, H.; Eum, S. Y.; Jeon, D. S.; Kang, H. S.; Kim, J. H.; Kim, B. J.;
Kim, D. Y.; Holland, S. M.; Park, S. K.; Cho, S. N.; Barry, C. E., 3rd; Via,
L. E. Extensively drug-resistant tuberculosis in South Korea: Risk factors
and treatment outcomes among patients at a tertiary referral hospital.
Clin. Infect. Dis. 2008, 46, 42–49.
’ ACKNOWLEDGMENT
We thank Prof. Jennifer DuBois and Dr. Jed Fisher for
profound scientific discussions. The excellent technical assis-
tance of Baojie Wan and Yuehong Wang with anti-TB assays at
UIC is greatly appreciated. Finally, we thank Gail Cassell and the
Lilly Tuberculosis Drug Discovery Initiative for their continued
support of this project.
’ REFERENCES
(1) Global tuberculosis control: Surveillance, planning, financing:
WHO report 2008. WHO/HTM/TB/2008.
(2) Sacchettini, J. C.; Rubin, E. J.; Freundlich, J. S. Drugs versus bugs:
In pursuit of the persistent predator Mycobacterium tuberculosis. Nat. Rev.
Microbiol. 2008, 6, 41–52.
(21) Kana, B. D.; Weinstein, E. A.; Avarbock, D.; Dawes, S. S.; Rubin,
H.; Mizrahi, V. Characterization of the cydAB-encoded cytochrome bd
oxidase from Mycobacterium smegmatis. J. Bacteriol. 2001, 24, 7076–86.
(22) Boshoff, H. I.; Myers, T. G.; Copp, B. R.; McNeil, M. R.;
Wilson, M. A.; Barry, C. E., 3rd The transcriptional responses of
Mycobacterium tuberculosis to inhibitors of metabolism: novel insights
into drug mechanisms of action. J. Biol. Chem. 2004, 38, 40174–40184.
(23) Marrero, J.; Rhee, K. Y.; Schnappinger, D.; Pethe, K.; Ehrt, S.
Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is
critical for Mycobacterium tuberculosis to establish and maintain infection.
Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 9819–24.
(3) Migliori, G. B.; De Iaco, G.; Besozzi, G.; Centis, R.; Cirillo, D. M.
First tuberculosis cases in Italy resistant to all tested drugs. Eurosurveil-
lance 2007, 12, 3194.
(4) Maher, D.; Blanc, L.; Raviglione, M. WHO policies for tubercu-
losis control. Lancet 2004, 363, 1911–1911.
(5) Pratt, R.; Robison, V.; Navin, T.; Bloss, E. Centers for Disease
Control and Prevention. Trends in Tuberculosis—United States.
MMWR 2009, 58, 249–253.
(6) Anaflous, A.; Benchat, N.; Mimouni, S.; Abouricha, S.; Ben-
Hadda, T.; El-Bali, A.; Hacht, B. Armed Imidazo [1,2-a] Pyrimidines
(Pyridines): Evaluation of Antibacterial Activity. Lett. Drug Des. Dis-
covery 2004, 1, 35–44.
(7) Kasimogullari, B. O.; Cesur, Z. Fused Heterocycles: Synthesis of
Some New Imidazo[1,2-a]-pyridine Derivatives. Molecules 2004,
9, 894–901.
(8) Odell, L. R.; Nilsson, M. T.; Gising, J.; Lagerlund, O.; Muthas,
D.; Nordqvist, A.; Karlen, A.; Larhed, M. Functionalized 3-amino-
imidazo[1,2-a]pyridines: A novel class of Mycobacterium tuberculosis
glutamine synthetase inhibitors. Bioorg. Med. Chem. Lett. 2009,
19, 4790–4793.
(9) Lombardino, J. G. Preparation and New Reactions of Imidazo-
[1,2-a]pyridines. J. Org. Chem. 1965, 30, 2403–2407.
(10) Moraski, G. C.; Chang, M.; Villegas-Estrada, A.; Franzblau, S.;
M€ollmann, U.; Miller, M. J. Structure-Activity Relationship of New
Antituberculosis Agents Derived from Oxazoline and Oxazole Benzyl
Esters. Eur. J. Med. Chem. 2010, 45, 1703–1716.
(11) Moraski, G. C.; Franzblau, S. G.; Miller, M. J. Utilization of the
Suzuki Coupling to Enhance the Antituberculosis Activity of Aryl
Oxazoles. Heterocycles 2009, 80, 977–988.
(12) Katritzky, A. R.; Xu, Y. -J.; Tu, H. Regiospecific Synthesis of
3-Substituted Imidazo[1,2-a]pyridines, Imidazo[1,2-a]pyrimidines, and
Imidazo[1,2-c]pyrimidine. J. Org. Chem. 2003, 68, 4935–4937.
(13) Topliss, J. G. Utilization of operational schemes for analog
synthesis in drug design. J. Med. Chem. 1972, 15, 1006–1011.
(14) Collins, L.; Franzblau, S. G. Microplate alamar blue assay versus
BACTEC 460 system for high-throughput screening of compounds
against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob.
Agents Chemother. 1997, 41, 1004–1009.
470
dx.doi.org/10.1021/ml200036r |ACS Med. Chem. Lett. 2011, 2, 466–470