ORGANIC
LETTERS
2011
Vol. 13, No. 10
2610–2613
Acid-Catalyzed Tandem Thiol Switch for
Preparing Peptide Thioesters from
Mercaptoethyl Esters
Khee Dong Eom and James P. Tam*
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive,
Singapore 637551
Received March 17, 2011
ABSTRACT
An efficient method compatible with Fmoc synthesis for preparing peptide thioesters via an acid-catalyzed tandem “thiol switch” of esters is
described first by an intramolecular OÀS acyl shift and then by an intermolecular SÀS exchange, with concurrent deblocking of side chain
protection groups.
Thioesters are versatile building blocks for various
synthetic schemes to prepare lactone and peptides.1 Thioe-
sters are susceptible to base and intolerant to piperidine in
Fmoc (fluorenylmethoxycarbonyl) chemistry and are cur-
rently the method of choice for many solid-phase syntheses
ofpeptides, particularly thosebearing glyco-and phospho-
modifications on the peptidyl side chains.2À4 These needs
have prompted the development of new methods for
preparing thioesters,5À9 and many employ a “thiol switch”
approach using a piperidine-resistant surrogate group
during the Fmoc peptide synthesis steps.2,4À9 Surrogate
groups such as sulfonamide, hydrazine, ester, and amide
with or without a thiol auxiliary2À7,9À15 are then activated
at the completion of peptide synthesis to undergo a thiol
switch reaction via an OÀS or NÀS acyl shift effected
either intra- or intermolecularly.
While each method has its merits, the use of a surrogate
is often complicated by synthetic complexity, by side
reactions at either the activation or the conversion step,
and in some cases, by the need of an additional step for its
removal. Consequently, a simple and practical method
would be valuable for preparing peptide thioesters under
an Fmoc-compatible scheme.
(1) (a) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B.
Science 1994, 266, 776–779. (b) Tam, J. P.; Lu, Y.-A.; Liu, C.-F. Proc.
Natl. Acad. Sci. U.S.A. 1995, 92, 12485–12489. (c) Tam, J. P.; Lu, Y.-A.;
Yang, J.-L.; Chiu, K.-W. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8913–
8918. (d) Xu, J.; Eom, K. D.; Tam, J. P. Biopolymers 2001, 60, 206–211.
(e) Nakamura, K.; Mori, H.; Kawakami, T.; Hojo, H.; Nakahara, Y.;
Aimoto, S. Int. J. Pept. Res. Ther. 2007, 13, 191–202.
(2) (a) Nagaike, F.; Onuma, Y.; Kanazawa, C.; Hojo, H.; Ueki, A.;
Nakahara, Y. Org. Lett. 2006, 8, 4465–4468. (b) Hojo, H.; Matsumoto,
Y.; Nakahara, Y.; Ito, E.; Suzuki, Y.; Suzuki, M.; Suzuki, A.; Nakahara,
Y. J. Am. Chem. Soc. 2005, 127, 13720–13725.
(3) Chen, G.; Wan, Q.; Tan, Z.; Kan, C.; Hua, Z.; Ranganathan, K.;
Danishefsky, S. J. Angew. Chem., Int. Ed. 2007, 46, 7383–7387.
(4) Nakamura, K.; Kanao, T.; Uesugi, T.; Hara, T.; Sato, T.;
Kawakami, T.; Aimoto, S. J. Pept. Sci. 2009, 15, 731–737.
(5) Ollivier, N.; Behr, J.-B.; El-Mahdi, O.; Blanpain, A.; Melnyk, O.
Org. Lett. 2005, 7, 2647–2650.
(10) Botti, P.; Villain, M.; Manganiello, S.; Gaertner, H. Org. Lett.
2004, 6, 4861–4864.
(11) Tofteng, A. P.; Jensen, K. J.; Hoeg-Jensen, T. Tetrahedron Lett.
2007, 48, 2105–2107.
(6) Camarero, J. A.; Hackel, B. J.; de Yoreo, J. J.; Mitchell, A. R. J.
Org. Chem. 2004, 69, 4145–4151.
(7) Sewing, A.; Hilvert, D. Angew. Chem., Int. Ed. 2001, 40, 3395–
3396.
(12) Kawakami, T.; Aimoto, S. Tetrahedron 2009, 65, 3871–3877.
(13) (a) Tsuda, S.; Shigenaga, A.; Bando, K.; Otaka, A. Org. Lett.
2009, 11, 823–826. (b) Mende, F.; Seitz, O. Angew. Chem., Int. Ed. 2011,
50, 1232–1240.
ꢀ
(8) Lelievre, D.; Barta, P.; Aucagne, V.; Delmas, A. F. Tetrahedron
(14) Ollivier, N.; Dheur, J.; Mhidia, R.; Blanpain, A.; Melnyk, O.
Org. Lett. 2010, 12, 5238–5241.
Lett. 2008, 49, 4016–4019.
(9) Blanco-Canosa, J. B.; Dawson, P. E. Angew. Chem., Int. Ed. 2008,
47, 6851–6855.
(15) Hou, W.; Zhang, X.; Li, F.; Liu, C.-F. Org. Lett. 2011, 13, 386–
389.
r
10.1021/ol2007204
Published on Web 04/26/2011
2011 American Chemical Society