S. K. Bagal et al. / Tetrahedron Letters 52 (2011) 2216–2220
2219
OH
O
Me
O
O
Me
HO
O
OH
O
O
(i)
(i)
HO
HO
Me
+
HO
Me
NHBoc
19, >99:1 dr
NHBoc
NHBoc
NHBoc
21
22
20, >99:1 dr
(ii)
O
Me
HO
O
OMe
Me
HO
O
O
Me
O
OMe
O
(i), (ii)
(iii)
HO
Me
+
AcO
NH2•HCl
NHBoc
19
19:20, 70:30 mixture, 55% yield from 13
NHAc
NHBoc
20
23
methyl N,O-diacetyl-α-
L
-acosaminide 24
>95:5 α:β anomeric mixture
10% from 19, 20% from 20
38% from a 70:30 mixture of 19:20
Scheme 5. Reagents and conditions: (i) DIBAL-H, CH2Cl2, ꢂ78 °C, 30 min; (ii) MeOH, HCl (concn aq), rt, 16 h; (iii) Ac2O, pyridine, DMAP, rt, 30 min.
7. (a) Lomakina, N. N.; Spiridonova, I. A.; Sheinker, Y. N.; Vlasova, T. F. Khim. Prir.
Soedin. 1973, 9, 101; (b) Spiridonova, I. A.; Yurina, M. S.; Lomakina, N. N.;
Sztaricskai, F.; Bognar, F. Antibiotiki 1976, 21, 304; (c) Harada, K.; Ito, S.; Suzuki,
M. Carbohydr. Res. 1979, 75, C17.
8. Weymouth-Wilson, A. C. Nat. Prod. Rep. 1997, 14, 99.
9. Di Marco, A.; Gaetani, M.; Dirogotti, L.; Soldati, M.; Bellini, O. Nature 1964, 201,
706.
10. Arcamone, F.; Cassinelli, G.; Fantani, G.; Grein, A.; Orezzi, P.; Pol, C.; Spalla, C.
Biotechnol. Bioeng. 1969, 11, 1101.
11. Weiss, R. B. Semin. Oncol. 1992, 19, 670.
12. Zaya, M. J.; Hines, R. N.; Stevens, J. C. Drug Metab. Dispos. 2006, 34, 2097.
13. See, for example: Roger, P.; Monneret, C.; Fournier, J.-P.; Choay, P.; Gagnet, R.;
Gosse, C.; Letourneux, Y.; Atassi, G.; Gouyette, A. J. Med. Chem. 1989, 32, 16;
Kovacs, I.; Herczegh, P.; Sztaricskai, J. Tetrahedron 1991, 37, 7837; Renneberg,
B.; Ling, Y.-M.; Laatsch, H.; Fiebig, H.-H. Carbohydr. Res. 2000, 329, 861; Shi, W.;
Coleman, R. S.; Lowary, T. L. Org. Biomol. Chem. 2009, 7, 3709.
14. See, for example: Hirama, M.; Shigemoto, T.; Itô, S. J. Org. Chem. 1987, 52, 3342;
Konradi, A. W.; Pedersen, S. F. J. Org. Chem. 1990, 55, 4506; Hatanaka, M.; Ueda,
I. Chem. Lett. 1991, 61.
Figure 5. Chem 3D representation of the single crystal X-ray structure of 24 (some
H atoms omitted for clarity).
3. Conclusion
15. See, for example: (a) Wovkulich, P. M.; Uskovic´, M. R. Tetrahedron 1985, 41,
3455; (b) Ginesta, X.; Pastó, M.; Pericàs, M. A.; Riera, A. Org. Lett. 2003, 5, 3001;
(c) Sugiura, M.; Hirano, K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 7182; (d)
Matsushima, Y.; Kino, J. Tetrahedron Lett. 2005, 46, 8609.
16. For a review, see: Hauser, F. M.; Ellenberger, S. R. Chem. Rev. 1986, 86, 35.
17. For a review concerning the use of secondary lithium amides (derived from a-
In conclusion, the diastereoselective conjugate addition of lith-
ium (R)-N-benzyl-N-(a-methylbenzyl)amide to tert-butyl sorbate
and subsequent chemo- and diastereoselective ammonium-direc-
ted olefinic oxidation of the resultant conjugate addition product
{tert-butyl (3S,aR)-3-[N-benzyl-N-(a-methylbenzyl)amino]hex-4-
ene} have been used as the key steps in a concise and highly selec-
tive asymmetric synthesis of the 2,3,6-trideoxy-3-aminohexose
methylbenzylamine) as enantiopure ammonia equivalents for conjugate
addition reactions, see: Davies, S. G.; Smith, A. D.; Price, P. D. Tetrahedron:
Asymmetry 2005, 16, 2833.
18. For a review, see: Kurosawa, W.; Roberts, P. M.; Davies, S. G. Yuki Gosei Kagaku
Kyokaishi J. Synth. Org. Chem. Jpn. 2010, 68, 1295.
L
-acosamine. This sequence of two chemical operations allows ra-
pid assembly of the molecular architecture and facilitates the syn-
thesis of methyl N,O-diacetyl- -acosaminide in only 7 steps from
19. We have previously reported
daunosamine employing syn-dihydroxylation of tert-butyl (3S,
benzyl-N-( -methylbenzyl)amino]hex-4-ene 13 under Sharpless AD
a
route to
L-daunosamine and
D-3-epi-
aR)-3-[N-
a-L
a
commercially available sorbic acid in 15% overall yield. The further
application of this ammonium-directed oxidation protocol towards
the synthesis of other amino sugars is currently underway in our
laboratory.
conditions; see: Davies, S. G.; Smyth, G. D. Tetrahedron: Asymmetry 1996, 7,
1273; Davies, S. G.; Smyth, G. D.; Chippindale, A. M. J. Chem. Soc., Perkin Trans. 1
1999, 3089.
20. Fischer, E.; Speier, A. Ber. Dtsch. Chem. Ges. 1895, 28, 3252; Altschul, R. J. Am.
Chem. Soc. 1946, 68, 2605; Smith, M. B.; March, J. March’s Advanced Organic
Chemistry – Reactions, Mechanisms, and Structure, 5th ed.; John Wiley & Sons:
New York, 2001.
Acknowledgements
21. Enantiopure (R)-
Reductive alkylation of (R)-
benzaldehyde and NaBH4 gave (R)-N-benzyl-N-(
subsequent deprotonation with BuLi in THF generated a pink solution of
lithium (R)-N-benzyl-N-( -methylbenzyl)amide 11.
a
-methylbenzylamine (99% ee) is commercially available.
-methylbenzylamine upon treatment with
-methylbenzyl)amine;
a
The authors would like to thank Pfizer for a CASE studentship
(P.M.S.) and Antoni Riera for providing a 1H NMR spectrum of an
a
80:20
a/b anomeric mixture of methyl N,O-diacetyl-L-a-
a
22. Davies, S. G.; Smyth, G. D. J. Chem. Soc., Perkin Trans. 1 1996, 2467.
23. The higher yield for 13 (resulting from conjugate addition to tert-butyl ester
10) as compared to 12 (resulting from conjugate addition to methyl ester 9)
reflects the decreased propensity of the latter to undergo detritic 1,2-addition;
see: Refs. [17,19,22]. See also: Davies, S. G.; Garrido, N. M.; Kruchinin, D.;
Ichihara, O.; Kotchie, L. J.; Price, P. D.; Price Mortimer, A. J.; Russell, A. J.; Smith,
A. D. Tetrahedron: Asymmetry 1793, 2006, 17.
24. (a) Aciro, C.; Claridge, T. D. W.; Davies, S. G.; Roberts, P. M.; Russell, A. J.;
Thomson, J. E. Org. Biomol. Chem. 2008, 6, 3751; (b) Aciro, C.; Davies, S. G.;
Roberts, P. M.; Russell, A. J.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2008,
6, 3762; (c) Bond, C. W.; Cresswell, A. J.; Davies, S. G.; Kurosawa, W.; Lee, J. A.;
Fletcher, A. M.; Roberts, P. M.; Russell, A. J.; Smith, A. D.; Thomson, J. E. J. Org.
Chem. 2009, 74, 6735.
acosaminide.
References and notes
1. Zhang, M.; Haga, A.; Sekiguchi, H.; Hirano, S. Int. J. Biol. Macromol. 1999, 27, 99.
2. Battacharya, S. N.; Kaufman, B.; Khorrami, A.; Enriquez, J. I.; Manna, B.
Inflammation 1988, 12, 433.
3. Closset, J.; Vandalem, J. L.; Hennen, G.; Lequin, R. M. Eur. J. Biochem. 1975, 57,
325; Lao, P. J.; Coleman, P. D. J. Neurosci. 1998, 18, 2399.
4. Arcamone, F.; Franceschi, G.; Orezzi, P.; Babier, W.; Mondelli, R. J. Am. Chem.
Soc. 1964, 86, 5334; Arcamone, F.; Cassinelli, G.; Orezzi, P.; Franceschi, G.;
Mondelli, R. J. Am. Chem. Soc. 1964, 86, 5335.
5. 3-epi-Daunosamine is the only member of the 2,3,6-trideoxy-3-aminohexose
family that has not been isolated from natural sources.
6. Gauze, G. F.; Kudrina, E. S.; Ukholina, R. S.; Gavrilina, G. V. Antibiotiki 1963, 8,
387; Brazhnikova, M. G.; Lomakina, N. N.; Lavrova, M. F.; Tolstykh, I. V.; Yurina,
M. S.; Kluyeva, L. M. Antibiotiki 1963, 8, 392.
25. (a) Bagal, S. K.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Russell, A. J.; Scott, P. M.;
Thomson, J. E. Org. Lett. 2010, 12, 136; (b) Bagal, S. K.; Davies, S. G.; Lee, J. A.;
Roberts, P. M.; Scott, P. M.; Thomson, J. E. J. Org. Chem. 2010, 75, 7745.
26. Emmons, W. D.; Pagano, A. S. J. Am. Chem. Soc. 1955, 77, 89.
27. Ono, M.; Saotome, C.; Akita, H. Tetrahedron: Asymmetry 1996, 7, 2595.