658
X.-H. Yan et al. / Inorganic Chemistry Communications 14 (2011) 654–658
(h) M. Ferbinteanu, T. Kajiwara, K.Y. Choi, H. Nojiri, A. Nakamoto, N. Kojima, F.
radiation (λ = 0.71073 Å). Semiempirical absorption corrections were applied
using the SADABS program. The structures were solved by direct methods and
refined by full-matrix least-squares on F2 using the SHELXS-97 and SHELXL-97
programs. Anisotropic thermal parameters were assigned to all non-hydrogen
atoms. The hydrogen atoms were set in calculated positions and refined as
riding atoms with a common fixed isotropic thermal parameter. Analytical
expressions of neutral atom scattering factors were employed, and anomalous
dispersion corrections were incorporated. Crystal data: {[EuL(NO3)3(CH3OH)]
(H2O)}n: crystal dimensions: 0.21 × 0.20 × 0.18 mm3, Fw = 1977.45, Triclinic,
space group P-1, a = 10.4447(8) Å, b = 10.9008(7) Å, c = 19.0476(15) Å, α =
94.550(3)°, β = 90.182(3)°, γ =111.027(2), V = 2016.7(3) Å3, Z = 1, Dc =
Cimpoesu, Y. Fujimura, S. Takaishi, M. Yamashita, A binuclear Fe(III)Dy(III)
single molecule magnet. quantum effects and models, J. Am. Chem. Soc. 128
(2006) 9008–9009;
(i) V. Chandrasekhar, B.M. Pandian, R. Azhakar, J.J. Vittal, R. Clérac, Linear
trinuclear mixed-metal CoII―GdIII―CoII single-molecule magnet: [L2Co2Gd]
[NO3]·2CHCl3 (LH3 (S)P[N(Me)N CH―C6H3―2―OH―3―OMe]3), Inorg.
Chem. 46 (2007) 5140–5142;
(j) V.M. Mereacre, A.M. Ako, R. Clérac, W. Wernsdorfer, G. Filoti, J. Bartolomé, C.E.
Anson, A.K. Powell, A bell-shaped Mn11Gd2 single-molecule magnet, J. Am.
Chem. Soc. 129 (2007) 9248–9249.
[3] (a) N. Sabbatini, M. Guardigli, J.M. Lehn, Luminescent lanthanide complexes as
photochemical supramolecular devices, Coord. Chem. Rev. 123 (1993)
201–228;
1.628 mg/m3, F (000) = 1000, GOF = 1.018, final R indices [I N2σ(I)]: R1
=
0.0225, wR2 = 0.0557; [TbL(NO3)3(CH3OH)]n: crystal dimensions: 0.37 × 0.33 ×
0.32 mm3, Fw = 985.67, Triclinic, space group P-1, a = 10.4462(10) Å, b =
(b) J. Zhang, Y. Tang, N. Tang, M.Y. Tan, W.S. Liu, K.B. Yu, Novel three-dimensional
network generated from the reaction of Eu(NO3)3 with an amide type
tripodal ligand, J. Chem. Soc. Dalton Trans. (2002) 832–833;
(c) X.Q. Song, W.S. Liu, W. Dou, J.R. Zheng, X.L. Tang, H.R. Zhang, D.Q. Wang,
Tuning the self-assembly and luminescence properties of lanthanide
coordination polymers by ligand design, Dalton Trans. (2008) 3582–3591;
10.8948(10) Å, c = 19.0659(18) Å, α = 94.608(4)°, β = 90.209(4)°,
γ =111.156(4), V = 2015.8(3) Å3, Z = 2, Dc = 1.624 mg/m3, F (000) = 992,
GOF = 1.009, final R indices [I N2σ(I)]: R1 = 0.0225, wR2 = 0.0606.
[8] (a) X.Q. Song, W. Dou, W.S. Liu, J.N. Yao, Y.L. Guo, X.L. Tang, Design, synthesis,
crystal structure and photophysical studies of an emissive, terbium based
sensor for zinc, Inorg. Chem. Commun. 10 (2007) 1058–1062;
(d) C.L. Yi, Y. Tang, W.S. Liu, M.Y. Tan, Assembly of
a
novel luminescent
(b) Y.L. Guo, W. Dou, X.Y. Zhou, W.S. Liu, W.W. Qin, Z.P. Zang, H.R. Zhang, D.Q.
Wang, Influence of conformational flexibility on self-assembly and
luminescence properties of lanthanide coordination polymers with
flexible exo-bidentate biphenol derivatives, Inorg. Chem. 12 (2009)
3581–3590;
coordination polymer from europium nitrate and a new semirigid bridging
podand, Inorg. Chem. Commun. 10 (2007) 1505–1509;
(e) D.Y. Liu, Z.Q. Kou, Y.F. Li, K.Z. Tang, Y. Tang, W.S. Liu, M.Y. Tan, Assembly,
crystal structure and luminescent properties of coordination polymer of
europium nitrate with an amide type bridging podand, Inorg. Chem.
Commun. 12 (2009) 461–464;
(c) W. Huang, D.Y. Wu, P. Zhou, W.B. Yan, D. Guo, C.Y. Duan, Q.J. Meng,
Luminescent and magnetic properties of lanthanide-thiophene-2, 5-dicar-
boxylate hybrid materials, Cryst. Growth Des. 9 (2009) 1361–1369.
[9] X.Q. Song, Z.P. Zang, W.S. Liu, Y.J. Zhang, Structure variation and luminescence
properties of lanthanide complexes with 1, 9-bis[2-(2′-picolylaminoformyl)-1, 4,
7, 9-tetraoxadecane, J. Solid State Chem. 182 (2009) 841–848.
(f) Q. Wang, K.Z. Tang, W.S. Liu, Y. Tang, M.Y. Tan, Preparation, crystal structure
and luminescent properties of the (6, 3) type network supramolecular
lanthanide picrate complexes with2, 2′-[(1, 2-naphthalene)bis(oxy)]bis[N-
(phenylmethyl)]acetamide, J. Solid State Chem. 182 (2009) 3118–3124.
[4] K. Michio, The dual fluorescence nature of some N-monosubstituted salicyla-
mides, Bull. Chem. Soc. Jpn. 49 (1976) 2679–2682.
[10] R. Shyni, S. Biju, M.L.P. Reddy, A.H. Cowley, M. Findlater, Synthesis, crystal
structures, and photophysical properties of homodinuclear lanthanide xanthene-
9-carboxylates, Inorg. Chem. 46 (2007) 11025–11030.
[5] Element analysis (%) for [SmL(NO3)3]·3H2O Calcd.: C 46.52, H 3.70, N 9.99; found:
C 46.66, H 3.50, N 9.54. IR (KBr pellet, cm-1) ν: ν(C=O):1611, ν1 (NO3- ): 1479, ν4
(NO-3): 1296, ν2 (NO-3): 1031, ν5 (NO-3): 814. Elemental analysis (%) for [EuL
(NO3)3]·3H2O Calcd.: C 46.45, H 3.69, N 9.98; found: C 46.37, H 3.84, N 9.69.
ν(C=O):1612, ν1 (NO3- ): 1478, ν4 (NO3- ): 1296, ν2 (NO-3): 1032, ν5 (NO-3): 814.
Elemental analysis (%) for [GdL(NO3)3]·3H2O Calcd.: C 46.20, H 3.67, N 9.92;
found: C 45.85, H 4.07, N 9.87. ν(C=O):1611, ν1 (NO-3): 1476, ν4 (NO3- ): 1299, ν2
(NO-3): 1032, ν5 (NO-3): 811. Elemental analysis (%) for [TbL(NO3)3]·3H2O Calcd.:
C 46.12, H 3.67, N 9.91; found: C 46.42, H 3.53, N 9.46. ν(C=O):1610, ν1 (NO-3):
1476, ν4 (NO-3): 1297, ν2 (NO3- ): 1031, ν5 (NO-3): 811. Elemental analysis (%) for
[DyL(NO3)3]·3H2O Calcd.: C 45.73, H 3.64, N 9.82; found: C 45.85, H 3.43, N 9.91.
ν(C=O):1611, ν1 (NO3- ): 1479, ν4 (NO3- ): 1296, ν2 (NO-3): 1031, ν5 (NO-3): 814.
[6] W.J. Geary, The use of conductivity measurements in organic solvents for the
characterisation of coordination compounds, Coord. Chem. Rev. 7 (1971) 81–122.
[7] The X-ray single-crystal data collection for complexes was performed on a
Bruker Smart 1000 CCD diffractometer, using graphite-monochromated Mo-Kα
[11] A.F. Kirby, D. Foster, F.S. Richardson, Comparison of 7FJ ←5D0 emission spectra for
Eu(III) in crystalline environments of octahedral, near-octahedral, and trigonal
symmetry, Chem. Phys. Lett. 95 (1983) 507–512.
[12] W.R. Dawson, J.L. Kropp, M.W. Windsor, Internal-energy-transfer efficiencies in
Eu3+ and Tb3+ chelates using excitation to selected ion levels, J. Chem. Phys. 45
(1966) 2410–2418.
[13] (a) M. Latva, H. Takalo, V.M. Mukkala, C. Marachescu, J.C. Rodriguez-Ubis, J.
Kankare, Correlation between the lowest triplet state energy level of the
ligand and lanthanide (III) luminescence quantum yield, J. Lumin. 75 (1997)
149–169;
(b) F. Gutierrez, C. Tedeschi, L. Maron, J.P. Daudey, R. Poteau, J. Azema, P. Tisnés,
C. Picard, Quantum chemistry-based interpretations on the lowest triplet
state of luminescent lanthanides complexes. Part 1. Relation between the
triplet state energy of hydroxamate complexes and their luminescence
properties, Dalton Trans. (2004) 1334–1347.