ORGANIC
LETTERS
2011
Vol. 13, No. 11
2834–2836
Syntheses of r-Pyrones Using Gold-
Catalyzed Coupling Reactions
Tuoping Luo,†,‡ Mingji Dai,†,‡ Shao-Liang Zheng,‡ and Stuart L. Schreiber*,†,‡
Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, 7 Cambridge
Center, Cambridge, Massachusetts 02142, United States, and Department of Chemistry
and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United
States
Received March 25, 2011
ABSTRACT
Sequential alkyne activation of terminal alkynes and propiolic acids by gold(I) catalysts yields compounds having R-pyrone skeletons.
Novel cascade reactions involving propiolic acids are reported that give rise to R-pyrones with different substitution patterns.
In efforts to synthesize compounds having properties
that facilitate small-molecule probe and drug discovery,1
we have developed multicomponent coupling reactions
that use gold(I) catalysts and yield, among others, complex
R-pyrones.2 Activation of the electron-deficient alkyne in
propargyl propiolate 1 by a cationic gold(I) catalyst results
in allenyl propiolate 2, which undergoes a 6-endo-dig
cyclization3 to oxocarbenium intermediate A (Figure 1).
In order to generate diverse and previously inaccessible
R-pyrones,4 we investigated the possibility of generating
the vinyl propiolate 5. We imagined this intermediate
undergoing a similar 6-endo cyclization to afford oxocar-
benium intermediate B and then R-pyrone 6 after depro-
tonation and proto-demetalation. Intermediate 5 would
result from an intermolecular coupling of propiolic acid 3
and alkyne 4 catalyzed by the same gold(I) catalyst.5
Herein, we describe a new gold(I)-catalyzed cascade reac-
tion based on the concept of sequential alkyne activation,2,6
synthesizing substituted R-pyrones in one step from readily
available propiolic acids.
We initiated our investigation using commercially avail-
able propiolic acid 3a and terminal alkyne 4a. The counter-
ion of the cationic gold(I) catalyst was determined to have
† Broad Institute of Harvard and MIT.
‡ Harvard University.
(1) Nielsen, T. E.; Schreiber, S. L. Angew. Chem., Int. Ed. 2008, 47,
48–56.
(2) (a) Luo, T.; Schreiber, S. L. Angew. Chem., Int. Ed. 2007, 46,
8250–8253. (b) Luo, T.; Schreiber, S. L. J. Am. Chem. Soc. 2009, 131,
5667–5674.
(3) For the application of gold-catalyzed 6-endo-dig cyclization, see:
(a) Sherry, B. D.; Maus, L.; Laforteza, B. N.; Toste, F. D. J. Am. Chem.
Soc. 2006, 128, 8132–8133. (b) Minnihan, E. C.; Colletti, S. L.; Toste,
F. D.; Shen, H. C. J. Org. Chem. 2007, 72, 6287–6289. (c) Imase, H.;
Noguchi, K.; Hirano, M.; Tanaka, K. Org. Lett. 2008, 10, 3563–3566.
ꢀ
ꢀ
(d) Barabe, F.; Betournay, G.; Bellavance, G.; Barriault, L. Org. Lett.
2009, 11, 4236–4238. (e) Menon, R. S.; Findlay, A. D.; Bissember, A. C.;
Banwell, M. G. J. Org. Chem. 2009, 74, 8901–8903. (f) Jiang, C.; Xu, M.;
Wang, S.; Wang, H.; Yao, Z. J. J. Org. Chem. 2010, 75, 4323–4325. (g)
Liu, Y.; Xu, W.; Wang, X. Org. Lett. 2010, 12, 1448–1451.
(4) (a) Dickinson, J. M. Nat. Prod. Rep. 1993, 10, 71–98. (b) van
Raaij, M. J.; Abrahams, J. P.; Leslie, A. G.; Walker, J. E. Proc. Natl.
Acad. Sci. U.S.A. 1996, 93, 6913–6917. (c) Steyn, P. S.; van Heerden,
F. R. Nat. Prod. Rep. 1998, 15, 397–413. (d) Salomon, C. E.; Magarvey,
N. A.; Sherman, D. H. Nat. Prod. Rep. 2004, 21, 105–121. (e) McGlacken,
G. P.; Fairlamb, I. J. Nat. Prod. Rep. 2005, 22, 369–385. (f) Sunazuka, T.;
Omura, S. Chem. Rev. 2005, 105, 4559–4580.
Figure 1. Syntheses of R-pyrones via gold(I)-catalyzed cascade
reactions.
r
10.1021/ol200794w
Published on Web 05/02/2011
2011 American Chemical Society