Journal of the American Chemical Society
COMMUNICATION
Scheme 4. Synthesis of (()-Cycloclavine
and 1.2% overall yield for 1 and in 17 steps and 2.3% overall yield
for 14. Noteworthy features of our strategies include the forma-
tion of the indole moieties through the allylic alcohol-IMDAF
reaction, as well as the rapid synthesis of cycloclavine’s indoline
core through a novel and highly stereoselective intramolecular
DielsꢀAlder reaction of a methylenecyclopropane.19,20
(5) Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H.; Munk, S. A.; Kitos,
P. A.; Suntornwat, O. J. Am. Chem. Soc. 1990, 112, 8961.
(6) Hennessy, E. J.; Buchwald, S. L. J. Am. Chem. Soc. 2003,
125, 12084.
(7) (a) Katritzky, A. R.; Manju, K.; Singh, S. K.; Meher, N. K.
Tetrahedron 2005, 61, 2555. (b) Deguest, G.; Bischoff, L.; Fruit, C.;
Marsais, F. Org. Lett. 2007, 9, 1165.
ꢀ
(8) Carre~no, M. C.; Merino, E.; Ribagorda, M.; Somoza, A.; Urbano,
’ ASSOCIATED CONTENT
A. Org. Lett. 2005, 7, 1419.
(9) Miyashita, M.; Suzuki, T.; Hoshino, M.; Yoshikoshi, A. Tetra-
hedron 1997, 53, 12469.
(10) Hydrogenation conditions using Pd, PtO2, or Rh/Al2O3 as
catalysts, hydride reduction (NaBH4, LiAlH4, or NaBH3CN), or single-
electron reduction conditions (SmI2) failed to provide the desired
product, instead favoring cyclopropane ring opening.
S
Supporting Information. Experimental details, charac-
b
terization data, copies of 1H and 13C NMR spectra, and crystal
information files. This material is available free of charge via the
(11) Koelsch, C. F.; Ostercamp, D. L. J. Org. Chem. 1961, 26, 1104.
(12) Baird, M. S.; Boitsov, V. M.; Stepakov, A. V.; Molchanov, A. P.;
Kopf, J.; Rajaratnam, M.; Kostikov, R. R. Tetrahedron 2007, 63, 7717.
(13) Kitatani, K.; Hiyama, T.; Nozaki, H. Bull. Chem. Soc. Jpn. 1977,
50, 3288.
’ AUTHOR INFORMATION
Corresponding Author
(14) For the formation and use in DielsꢀAlder reactions of amino
dienes, see: (a) Oppolzer, W.; Fr€ostl, W. Helv. Chim. Acta 1975, 58, 590.
(b) Overman, L. E.; Taylor, G. F.; Jessup, P. J. Tetrahedron Lett. 1976,
36, 3089. (c) Kozmin, S. A.; Rawal, V. H. J. Org. Chem. 1997, 62, 5252.
(d) Wipf, P.; Wang, X. Tetrahedron Lett. 2000, 41, 8747. (e) Kozmin,
S. A.; He, S.; Rawal, V. H. Org. Synth. 2002, 78, 152, ibid. 160.
(15) Transition states were identified using an RHF/6-311G*
transition state search in Spartan 10 (Wavefunction, Inc., Irvine, CA).
(16) Bonjoch, J.; Solꢀe, D.; García-Rubio, S.; Bosch, J. J. Am. Chem.
Soc. 1997, 119, 7230.
’ ACKNOWLEDGMENT
This work was supported by the NIH/NIGMS CMLD
program (GM067082). We thank Dr. Steve Geib (University
of Pittsburgh) for X-ray crystallographic analyses and
Drs. Anthony Cuzzupe and Cody Timmons (University of
Pittsburgh) for preliminary synthetic studies on the synthesis
of cycloclavine.
(17) Ito, Y.; Toshikazu, H.; Saegusa, T. J. Org. Chem. 1978, 43, 1011.
’ REFERENCES
(18) 1: Mp 153.2ꢀ155.3 °C (acetone/chloroform); IR (ATR)
(1) (a) Boichenko, L. V.; Boichenko, D. M.; Vinokurova, N. G.;
Reshetilova, T. A.; Arinbasarov, M. U. Microbiology 2001, 71, 306.
(b) Schiff, P. L. Am. J. Pharm. Educ. 2006, 70, 98. (c) Wallwey, C.; Li,
S.-M. Nat. Prod. Rep. 2011, 28, 496.
(2) Stauffacher, D.; Niklaus, P.; Tscherter, H.; Weber, H. P.;
Hofmann, A. Tetrahedron 1969, 25, 5879.
(3) Incze, M.; D€ornyei, G.; Moldvai, I.; Temesvꢀari-Major, E.; Egyed,
O.; Szꢀanty, C. Tetrahedron 2008, 64, 2924.
(4) (a) Petronijeviꢀc, F.; Timmons, C.; Cuzzupe, A.; Wipf, P. Chem.
Commun. 2009, 1, 104. For pioneering applications of the IMDAF
cycloaddition to natural product synthesis, see: (b) Boonsompat, J.;
Padwa, A. J. Org. Chem. 2011, 76, 2753 and references cited therein.
2921, 2798, 1591, 1590, 1441, 1150 cmꢀ1 1H NMR (700 MHz,
;
CDCl3) δ 7.92 (bs, 1 H), 7.15 (d, 1 H, J = 8.4 Hz), 7.10 (app t, 1 H,
J = 7.7 Hz), 7.91 (s, 1 H), 6.84 (d, 1 H, J = 7.0 Hz), 3.17 (d, 1 H, J = 9.1
Hz), 3.15 (dd, 1 H, J = 14.0, 4.2 Hz), 2.79 (dd, 1 H, J = 11.2, 3.5 Hz), 2.61
(t, 1 H, J = 12.6 Hz), 2.42 (d, 1 H, J = 8.4 Hz), 2.37 (s, 3 H), 1.70 (s, 3 H),
1.61 (d, 1 H, J = 2.8 Hz), 0.46 (d, 1 H, J = 3.5 Hz); 13C NMR (125 MHz,
CDCl3) δ 135.4, 133.5, 128.7, 122.9, 118.1, 113.2, 110.3, 107.9, 69.6,
65.6, 39.9, 34.3, 27.8, 24.9, 24.2, 16.5; HRMS (APIþ) m/z calcd for
C16H19N2 239.1548, found 239.1572.
(19) In a few cases, unsubstituted methylenecyclopropane and other
simple derivatives, such as perfluoromethylenecyclopropane, 2,2-di-
fluoromethylenecyclopropane, and methyl 2-chloro-2-cyclopropylidene
7706
dx.doi.org/10.1021/ja2026882 |J. Am. Chem. Soc. 2011, 133, 7704–7707