Organic Letters
Letter
precursors with the stereochemistry appropriate for the
miharamycin tetrahydrofuran secondary alcohol.
DEDICATION
Dedicated to the memory of Prof. Dr. Derek Horton.
■
As shown for compound 11E, double-bond osmylation was
followed by cyclization to lactone 21 by reaction with LiOH
and acetylation of the crude product (Scheme 1A). Reductive
deoxygenation of lactone 21 with trichlorosilane, BH3−DMS/
NaBH4, and Et3SiH/TiCl4−TMSOTf was attempted. However,
only Et3SiH in the presence of catalytic InBr3 succeeded to give
the target compound. This method, developed by Sakai and co-
workers17 and herein applied to carbohydrate templates for the
first time, seems to be promising for reducing this type sugar-
fused lactone. Preliminary studies on the readily available
bicyclic lactone 3 afforded, after 45 min, the reduced
unsaturated lactone 24 in 71% yield and compound 25,
bearing the fully reduced tetrahydrofuran ring, in 16% yield,
both keeping the pivaloyl group in the structure (Scheme 1B).
However, when the system was applied to lactone 21, a
complex reaction mixture was obtained. The target molecule 23
was synthesized by replacing the acetyl by benzyl groups. This
transformation was carried out by treatment of 21 with a
methanolic solution of K2CO3 for deprotection, followed by
benzylation with benzyl trichloroacetimidate. Reductive deox-
ygenation of 22 assisted by Et3SiH and InBr3 afforded the fully
protected miharamycins’ sugar moiety 23 in 51% yield over
three steps (Scheme 1A).
REFERENCES
■
(1) Cachatra, V.; Rauter, A. P. Curr. Org. Chem. 2014, 18, 1731.
(2) Xavier, N. M.; Goulart, M.; Neves, A.; Justino, J.; Chambert, S.;
Rauter, A. P.; Queneau, Y. Bioorg. Med. Chem. 2011, 19, 926.
(3) (a) Xavier, N. M.; Rauter, A. P. Org. Lett. 2007, 9, 3339.
(b) Xavier, N. M.; Silva, S.; Madeira, P. J. A.; Floren
V. M.; Justino, J.; Thiem, J.; Rauter, A. P. Eur. J. Org. Chem. 2008,
2008, 6134. (c) Xavier, N. M.; Madeira, P. J. A.; Florencio, M. H.;
Rauter, A. P. Eur. J. Org. Chem. 2009, 2009, 4983.
(4) Tsuruoka, T.; Yumoto, H.; Ezaki, N.; Niida, T. Sci. Rep. Meiji
Seika Kasha 1967, 9, 1.
(5) Fairbanks, A. J.; Sinay, P. Synlett 1995, 1995, 277.
(6) (a) Rauter, A.; Ferreira, M.; Borges, C.; Duarte, T.; Piedade, F.;
Silva, M.; Santos, H. Carbohydr. Res. 2000, 325, 1. (b) Rauter, A. P.;
Oliveira, O.; Canda, T.; Leroi, E.; Ferreira, H.; Ferreira, M. J.; Ascenso,
J. A. J. Carbohydr. Chem. 2002, 21, 257.
(7) Rauter, A. P.; Fernandes, A. C.; Czernecki, S.; Valery, J.-M. J. Org.
Chem. 1996, 61, 3594.
̂
cio, M. H.; Silva, F.
̂
̈
(8) Marcelo, F.; Jimen
P.; Bleriot, Y. Chem. - Eur. J. 2008, 14, 10066.
(9) Marcelo, F.; Silva, F. M. S.; Goulart, M.; Justino, J.; Sinay, P.;
́
ez-Barbero, J.; Marrot, J.; Rauter, A. P.; Sinay,
̈
́
̈
́
Bleriot, Y.; Rauter, A. P. Bioorg. Med. Chem. 2009, 17, 5106.
(10) Ramanan, V. K.; Risacher, S. L.; Nho, K.; Kim, S.; Swaminathan,
S.; Shen, L.; Foroud, T. M.; Hakonarson, H.; Huentelman, M. J.;
Aisen, P. S.; Petersen, R. C.; Green, R. C.; Jack, C. R.; Koeppe, R. A.;
Jagust, W. J.; Weiner, M. W.; Saykin, A. J. Alzheimer’s Disease
Neuroimaging Initiative Mol. Mol. Psychiatry 2014, 19, 351.
(11) Cahn, R. S.; Ingold, C.; Prelog, V. Angew. Chem., Int. Ed. Engl.
1966, 5 (4), 385.
Spectroscopic and analytical data are in full agreement with
those predicted for structure 23, which can be used, after
deprotection/orthogonal protection, as starting material for the
miharamycins’ total synthesis,8 making this synthetic approach
a valuable alternative to the samarium iodide-based method-
ology previously described.5
(12) Byrne, P. A.; Gilheany, D. G. Chem. Soc. Rev. 2013, 42, 6670.
(13) (a) Robiette, R.; Richardson, J.; Aggarwal, V. K.; Harvey, J. N. J.
Am. Chem. Soc. 2005, 127, 13468. (b) Robiette, R.; Richardson, J.;
Aggarwal, V. K.; Harvey, J. N. J. Am. Chem. Soc. 2006, 128, 2394.
ASSOCIATED CONTENT
* Supporting Information
■
S
́
(14) Stępien, M. J. Org. Chem. 2013, 78, 9512.
(15) Addition of the ylide from the opposite face of the pyranose ring
requires a significantly higher (∼8.5 kcal mol−1) activation barrier (see
The Supporting Information is available free of charge on the
(16) García Lop
́
ez, J. G.; Ramallal, A. M.; Gonzal
́
ez, J.; Roces, L.;
Detailed experimental procedures, compound character-
ization by physical, spectroscopic, and HRMS data, and
García-Granda, S.; Iglesias, M. J.; Ona-Burgos, P.; Ortiz, F. L. J. Am.
̃
Chem. Soc. 2012, 134, 19504.
(17) Sakai, N.; Moriya, T.; Konakahara, T. J. Org. Chem. 2007, 72,
5920.
1
copies of H and 13C NMR spectra of new compounds
Computational details, full results for the energy profiles,
and geometrical parameters (PDF)
Coordinates for the optimized intermediates and
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Dr. Gerry Moss (Queen Mary University of London)
for advice regarding the compounds’ IUPAC systematic names.
Fundaca̧ o para a Ciencia e a Tecnologia is gratefully
̂
̃
acknowledged for financial support of the project UID/
MULTI/00612/2013 and for Ph.D. grants for V.C. (SFRH/
BD/90359/2012) and D.V.-V. (SFRH/BD/81017/2011).
D
Org. Lett. XXXX, XXX, XXX−XXX