ORGANIC
LETTERS
2011
Vol. 13, No. 11
2952–2955
Silver-Catalyzed Cycloisomerization of
1,n-Allenynamides
Pierre Garcia,† Youssef Harrak,† Lisa Diab,† Pierre Cordier,† Cyril Ollivier,†
Vincent Gandon,‡ Max Malacria,*,† Louis Fensterbank,*,† and Corinne Aubert*,†
ꢀ
ꢀ
UPMC Univ Paris 06, Sorbonne Universites, Institut Parisien de Chimie Moleculaire
(UMR CNRS 7201),4 place Jussieu, C. 229, 75005 Paris, France, and Univ Paris-Sud,
UMR CNRS 8182, 91405 Orsay, France
max.malacria@upmc.fr; louis.fensterbank@upmc.fr; corinne.aubert@upmc.fr
Received April 20, 2011
ABSTRACT
A variety of allenynamides can undergo cycloisomerization reactions in the presence of silver triflate thus leading to the formation of N-containing
heterocycles incorporating cross-conjugated trienes. Access to new dienic 4-piperidinone and azepane motifs was achieved. An extension to one-
pot tandem sequences involving silver-catalyzed cycloisomerization/DielsꢀAlder reaction was also examined.
Over the past decade, remarkable advances have been
made in the field of ynamide chemistry. Numerous studies
have illustrated the versatility of such a function in a range
of reactions1 featuring radical cascades, cycloadditions,
ring closure metathesis, intramolecular carbopalladations,
and cycloisomerization2 transformations providing a di-
verse array of novel N-heterocyclic core structures for the
synthesis of potential pharmacophores. For instance, in
2004, we showed that the PtCl2-catalyzed ene-ynamide
cycloisomerization can lead to original aza-1,3-dienes or
aza-bicyclo compounds.2a
In this context, we decided to study the behavior of
allenynamides in the presence of π-acid transition metals
(MT) suchascopper(II), silver(I), platinum(II), and gold(I)
salts. Considering that under π-acid catalysis allenynes
react usually through initial triple bond activation,3 we
anticipated that the inherent polarization of the ynamide
triple bond should allow a strong electrophilic activation
by coordination of the metal and then trigger a nucleo-
philic attack from the allenic part to generate unusual
reactive unsaturated piperidine allylic cation intermediates
of type A (Scheme 1). The latter should evolve differently
† UPMC Univ Paris 06.
‡ Univ Paris-Sud.
(1) (a) For recent reviews on ynamide chemistry, see: (a) DeKorver,
K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Shi, Z.; Zhang, Y.; Hsung, R. P.
Chem. Rev. 2010, 110, 5064. (b) Evano, G.; Coste, A.; Jouvin, K. Angew.
Chem., Int. Ed. 2010, 49, 2840.
(3) For a detailed review on transition-metal-catalyzed cycloisome-
rization of allenynes involving alkyne or allene activation, see: Aubert,
C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Chem.
Rev. 2011, 111, 1954. For selected works of our group, see: (a) Cadran,
(2) (a) Marion, F.; Coulomb, J.; Courillon, C.; Fensterbank, L.;
Malacria, M. Org. Lett. 2004, 6, 1509. (b) Marion, F.; Coulomb, J.;
Servais, A.; Courillon, C.; Fensterbank, L.; Malacria, M. Tetrahedron
2006, 62, 3856. (c) Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slater,
B. W.; Davis, A. Org. Lett. 2005, 7, 1047. (d) Buzas, A.; Gagosz, F. Org.
Lett. 2006, 8, 515. (e) Poloukhtine, A.; Popik, V. V. J. Am. Chem. Soc.
2007, 129, 12062. (f) Buzas, A.; Istrate, F.; Gagosz, F. Tetrahedron 2009,
65, 1889. (g) Hashmi, A. S.; Salathie, R.; Frey, W. Synlett 2007, 11, 1763.
(h) Istrate, F. M.; Buzas, A. K.; Jurberg, I. D.; Odabachian, Y.; Gagosz,
F. Org. Lett. 2008, 10, 925. (i) Lin, G.-Y.; Li, C.-W.; Hung, S.-H.; Liu,
R.-S. Org. Lett. 2008, 10, 5059. (j) Hashmi, A. S.; Rudolph, M.; Bats, J.;
Frey, W.; Rominger, F.; Oeser, T. Chem.;Eur. J. 2008, 14, 6672. (k)
Yao, P.-Y.; Zhang, Y.; Hsung, R.; Zhao, K. Org. Lett. 2008, 10, 4275. (l)
Dooleweerdt, K.; Ruhland, T.; Skrydstrup, T. Org. Lett. 2009, 11, 221.
(m) Couty, S.; Meyer, C.; Cossy, J. Angew. Chem., Int. Ed. 2006, 45,
6726. (n) Couty, S.; Meyer, C.; Cossy, J. Tetrahedron 2009, 65, 1809.
ꢀ
N.; Cariou, K.; Herve, G.; Aubert, C.; Fensterbank, L.; Malacria, M.;
Marco-Contelles, J. J. Am. Chem. Soc. 2004, 126, 3408. (b) Zriba, R.;
Gandon, V.; Aubert, C.; Fensterbank, L.; Malacria, M. Chem.;Eur. J.
2008, 14, 1482.
(4) For selected recent works on thermal [2 þ 2] intramolecular
isomerization of allenynes, see: (a) Cao, H.; Van Ornum, S. G.;
Deschamps, J.; Flippen-Anderson, J.; Laib, F.; Cook, J. M. J. Am.
Chem. Soc. 2005, 127, 933. (b) Brummond, K. M.; Chen, D. Org. Lett.
2005, 7, 3473. (c) Mukai, C.; Hara, Y.; Miyashita, Y.; Inagaki, F. J. Org.
Chem. 2007, 72, 4454. (d) Jiang, X.; Ma, S. Tetrahedron 2007, 63, 7589.
(e) Ohno, H.; Mizutani, T.; Kadoh, Y.; Aso, A.; Miyamura, K.; Fujii,
N.; Tanaka, T. J. Org. Chem. 2007, 72, 4378. (f) Buisine, O.; Gandon, V.;
Fensterbank, L.; Aubert, C.; Malacria, M. Synlett 2008, 751. (g) Alcaide,
B.; Almendros, P.; Aragoncillo, C. Chem. Soc. Rev. 2010, 39, 783.
r
10.1021/ol201041h
Published on Web 05/02/2011
2011 American Chemical Society