J Incl Phenom Macrocycl Chem (2011) 69:417–423
423
13. Fenger, T.H., Bjerre, J., Bols, M.: Cyclodextrin aldehydes are
oxidase mimics. ChemBioChem 10, 2494–2503 (2009)
14. Filliben, J.J.: Dataplot—an interactive high-level language for
graphics, non-linear fitting, data analysis and mathematics.
Comput. Graph. 15, 199–213 (1981)
15. Bjerre, J., Fenger, T.H., Bols, M.: Synthesis of some trifluo-
romethylated cyclodextrin derivatives and analysis of their
properties as artificial glycosidases and oxidases. Eur. J. Org.
Chem. 704–710 (2007)
16. Pearce, A., Sinay¨, P.: Diisobutylaluminium-promoted regiose-
lective de-O-benzylation of perbenzylated cyclodextrins: a pow-
erful new strategy for the preparation of selectively modified
cyclodextrins. Angew. Chem. Int. Ed. 39, 3610–3612 (2000)
17. Lecourt, T., Herault, A.J., Pearce, M., Sollogoub, M., Sinay¨, P.:
Triisobutylaluminium and diisobutylaluminium hydride as
molecular scalpels: the regioselective stripping of perbenzylated
sugars and cyclodextrins. Chem. Eur. J. 10, 2960–2971 (2004)
18. Lecourt, T., Mallet, J.-M., Sinay¨, P.: An efficient preparation of
6I, IV dihydroxy permethylated b-cyclodextrin. Carbohydr. Res.
338, 2417–2419 (2003)
reactive CD diketone is therefore a weaker oxidation cat-
alyst. This in turn makes the ketone suited for styrene
epoxidation, whereas the aldehyde is uneffective for this
purpose. The catalysis is roughly proportional to the
number of catalytic groups on the CD, but the structure of
the substrate plays an equally important role in determining
how effectively the reaction can be catalyzed. These find-
ings on substrate compatibility provide new insight on the
potentials of CD catalysis, which fosters optimism for
future applications of CD chemzymes in synthetic biology.
Acknowledgments We thank The Lundbeck Foundation for finan-
cial support.
References
19. Horvath, T., Kaizer, J., Speier, G.: Functional phenoxazinone
synthase models. Kinetic studies on the copper-catalyzed oxy-
genation of 2-aminophenol. J. Mol. Catal. 215, 9–15 (2004)
20. Brown, K.C., Corbett, J.F.: Benzoquinone imines. Part 16. Oxi-
dation of p-aminophenol in aqueous solution. J. Chem. Soc.
Perkin Trans. 2, 308–311 (1979)
21. Fenger, T.H., Marinescu, L.G., Bols, M.: Cyclodextrin ketones as
oxidation catalysts: investigation of bridged derivatives. Org.
Biomol. Chem. 7, 933–943 (2009)
22. Marinescu, L., Bols, M.: Very high rate enhancement of benzyl
alcohol oxidation by an artificial enzyme. Angew. Chem. Int. Ed.
45, 4590–4593 (2006)
23. Suzuki, H., Furusho, Y., Higashi, T., Ohnishi, Y., Horinouchi, S.:
A novel o-aminophenol oxidase responsible for formation of the
phenoxazinone chromophore of grixazone. J. Biol. Chem. 281,
824–833 (2006)
24. Marinescu, L., Mølbach, M., Rousseau, C., Bols, M.: Supramo-
lecular oxidation of anilines using hydrogen peroxide as stoi-
chiometric oxidant. J. Am. Chem. Soc. 127, 17578–17579 (2005)
25. Sander, E.G., Jencks, W.P.: Equilibria for additions to the car-
bonyl group. J. Am. Chem. Soc. 90, 6154–6162 (1968)
26. Rousseau, C.; Christensen, B.; Bols, M.: Artificial epoxidase II.
Synthesis of cyclodextrin ketoesters and epoxidation of alkenes.
Eur. J. Org. Chem. 2734–2739 (2005)
27. Rousseau, C., Christensen, B., Petersen, T.E., Bols, M.: Cyclo-
dextrins containing an acetone bridge. Synthesis and study as
epoxidation catalysts. Org. Biomol. Chem. 2, 3476–3482 (2004)
28. Travis, B.R., Sivakumar, M., Hollist, G.O., Borhan, B.: Facile
oxidation of aldehydes to acids and esters with oxone. Org. Lett.
5, 1031–1034 (2003)
1. Burton, S.G.: Laccases and phenol oxidases in organic synthe-
sis—a review. Curr. Organ. Chem. 7, 1317–1331 (2003)
2. Ferguson Miller, S., Babcock, G.T.: Heme/copper terminal oxi-
dases. Chem. Rev. 96, 2889–2907 (1996)
3. Bjerre, J., Rousseau, C., Marinescu, L., Bols, M.: Artificial
enzymes, ‘‘chemzymes’’: current state and perspectives. Appl.
Microbiol. Biotechnol. 81, 1–11 (2008)
4. Zhang, B., Breslow, R.: Ester hydrolysis by a catalytic cyclo-
dextrin dimer enzyme mimic with a metallobipyridyl linking
group. J. Am. Chem. Soc. 119, 1676–1681 (1997)
5. Yan, J., Breslow, R.: An enzyme mimic that hydrolyzes an
unactivated ester with catalytic turnover. Tetrahedron Lett. 41,
2059–2062 (2000)
6. Tsutsumi, H., Ikeda, H., Mihara, H., Ueno, A.: Enantioselective
ester hydrolysis catalyzed by b-cyclodextrin conjugated with
b-hairpin peptides. Bioorg. Med. Chem. Lett. 14, 723–726 (2004)
7. Ye, H., Tong, W., D’Souza, V.T.: Efficient catalysis of a redox
reaction by an artificial enzyme. J. Am. Chem. Soc. 114, 5470–
5472 (1992)
8. Ye, H., Rong, D., Tong, W., D’Souza, V.T.: Artificial redox
enzymes. Part 3: structure and properties. J. Chem. Soc. Perkin
Trans. 2, 2071–2076 (1992)
9. Ye, H., Tong, W., D’Souza, V.T.: Flavocyclodextrins as artificial
redox enzymes. Part 4: catalytic reactions of alcohols, aldehydes
and thiols. J. Chem. Soc. Perkin Trans. 2, 2431–2437 (1994)
10. Breslow, R., Dong, S.D.: Biomimetic reactions catalyzed by
cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2011
(1998)
11. Bjerre, J., Nielsen, E.H., Bols, M.: Hydrolysis of toxic natural
glucosides catalyzed by cyclodextrin dicyanohydrins. Eur. J. Org.
Chem. 745–752 (2008)
12. Ortega-Caballero, F., Bjerre, J., Laustsen, L.S., Bols, M.: Four
orders of magnitude rate increase in artificial enzyme-catalyzed
aryl glycoside hydrolysis. J. Org. Chem 70, 7217–7226 (2005)
123