LETTER
Pd-Catalyzed Reaction of Olefins with PhI(OAc)2–TBAB
581
(5) Selected recent articles about MCB, please see: (a) Jiang,
M.; Shi, M. J. Org. Chem. 2009, 74, 2516. (b) Jiang, M.;
Shi, M. Org. Lett. 2008, 10, 2239. (c) Jiang, M.; Liu, L.-P.;
Shi, M. Tetrahedron Lett. 2007, 63, 9599. (d) Li, W.; Shi,
M. Tetrahedron 2007, 63, 11016. (e) Jiang, M.; Shi, M.
Tetrahedron 2008, 64, 10140. (f) Jiang, M.; Shi, M.
Tetrahedron 2009, 65, 798.
Bu4NBr + Pd(OAc)2
R1
R2
R3
R4
AcO–
R1 = Ar,
2 = H
(Bu4N)2Pd3Br8
Br
Pd
R3
R4
R
4
A
H
R1
R3
(6) (a) Cabanal-Duvillard, I.; Berrien, J.; Royer, J.; Husson, H.
Tetrahedron Lett. 1998, 39, 5181. (b) Rossen, K.; Reamer,
R. A.; Volante, R. P.; Reider, P. J. Tetrahedron Lett. 1996,
37, 6843. (c) Mevellec, L.; Evers, M.; Huet, F. Tetrahedron
1996, 52, 15103. (d) Sawyer, D. T.; Hage, J. P.; Sobkowiak,
A. J. Am. Chem. Soc. 1995, 117, 106.
(7) (a) Ma, S.-M.; Hao, X.-S.; Huang, X. Chem. Commun. 2003,
1082. (b) Ma, S.-M.; Hao, X.-S.; Huang, X. Org. Lett. 2003,
5, 1217. (c) Ma, S.-M.; Ren, H.-J.; Wei, Q. J. Am. Chem.
Soc. 2003, 125, 4817. (d) Ma, S.-M.; Wei, Q.; Wang, H.
Org. Lett. 2000, 2, 3893.
(8) (a) Yang, Y.-W.; Huang, X. J. Org. Chem. 2008, 73, 4702.
(b) Yang, Y.-W.; Su, C.-L.; Huang, X.; Liu, Q.-Y.
Tetrahedron Lett. 2009, 50, 5754.
(9) Yu, L.; Meng, B.; Huang, X. J. Org. Chem. 2008, 73, 6895.
(10) Yu L., Ren L.-F., Xu B., Guo R. Synth. Commun. 2010, 40,
in press.
(11) Selected recent articles on PhI(OAc)2–TBAX system:
(a) Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem.
Int. Ed. 2008, 47, 5215. (b) Fan, R.-H.; Wen, F.-Q.; Qin,
L.-H.; Pu, D.-M.; Wang, B. Tetrahedron Lett. 2007, 48,
7444. (c) Fan, R.-H.; Sun, Y.; Ye, Y. Org. Lett. 2009, 11,
5174. (d) Ye, Y.; Zheng, C.; Fan, R.-H. Org. Lett. 2009, 11,
3156. (e) Fan, R.-H.; Ye, Y.; Li, W.-X.; Wang, L.-F. Adv.
Synth. Catal. 2008, 350, 2488.
R
Pd(OAc)LnBrm–1
R2
R4
PdLnBrm
F
E
B, L = Bu4N
2
R1, R2 ≠ H
Br
2e, 2l
or 2m
R3
R4
PdLnBrm–1
R1
R2
AcO
Br
E
R3
R4
PdLnBrm–1
C, R1, R2 >> R3, R4
PhI(OAc)2
R1
R2
OAc
D
PhI
Scheme 2
ing on the substituted groups on the C=C bond. Therefore,
this strategy could be an effective supplement of bromo-
hydroxylations in organic synthesis.
Supporting Information for this article is available online at
(12) Typical Procedure for the Preparation of 2
In the presence of Pd(OAc)2 (0.03 mmol, 6.7 mg), olefins
(0.3 mmol), PhI(OAc)2 (0.6 mmol), and TBAB (0.3 mmol)
were heated in MeCN (2 mL) at 60 °C. The reaction was
monitored by TLC. When the reaction terminated, H2O (5
mL) was added, and the liquid was extracted by EtOAc (3 ×
5 mL). The combined organic layer was dried by anhyd
MgSO4, and the solvent was evaporated under vacuum. The
residue was subjected to preparative TLC (eluent: PE–
EtOAc = 8:1) to give the corresponding product 2.
Data for Compound 2a
Acknowledgment
This work was supported by the Natural Scientific Foundation of
Jiangsu Province (NO. BK2010321), University Natural Scientific
Foundation of Jiangsu Province (NO. 09KJB150014), the 45th Post-
doctor foundation of China (NO. 20090451249), and the National
Natural Scientific Foundation of China (NO. 20633010 and
20773106).
References and Notes
Oil. IR (film): 2952, 1751, 1639, 1494, 1446, 1366, 1218,
1084, 1013, 986, 961, 904, 750, 706 cm–1. 1H NMR (600
MHz, CDCl3): d = 7.52–7.53 (m, 4 H), 7.30–7.32 (m, 6 H),
3.28–3.30 (m, 2 H), 2.40–2.43 (m, 1 H), 2.25–2.28 (m, 2 H),
2.12 (s, 3 H), 1.83–1.85 (m, 1 H) ppm. 13C NMR (150 MHz,
CDCl3): d = 15.8, 22.3, 37.3, 74.4, 88.7, 127.0, 127.8, 129.7,
137.7, 168.0 ppm. MS (EI, 70 eV): m/z (%) = 278 (3) [M+ –
Br], 183 (100). Anal. Calcd for C19H19BrO2: C, 63.52; H,
5.33. Found: C, 63.20; H, 5.14.
(1) For reviews, please see: (a) Brandi, A.; Cicchi, S.; Cordero,
F. M.; Goti, A. Chem. Rev. 2003, 103, 1213. (b) Nakamura,
I.; Yamamoto, Y. Adv. Synth. Catal. 2002, 344, 111. (c)
Selected recent articles about MCP, please see: Nakamura,
E.; Yamago, S. Acc. Chem. Res. 2002, 35, 867. (d) Yu, L.;
Meng, J.-D.; Xia, L.; Guo, R. J. Org. Chem. 2009, 74, 5087.
(e) Miao, M.-Z.; Huang, X. J. Org. Chem. 2009, 74, 5636.
(f) Hu, B.; Zhu, J.-L.; Xing, S.-Y.; Fang, J.; Du, D.; Wang,
Z.-W. Chem. Eur. J. 2009, 15, 324. (g) Tian, G.-Q.; Li, J.;
Shi, M. J. Org. Chem. 2008, 73, 673. (h) Jiang, M.; Shi, M.
Organometallics 2009, 28, 5600.
(2) Selected recent articles about VCP, please see: (a) Li, W.;
Shi, M. J. Org. Chem. 2009, 74, 856. (b) Su, C.-L.; Huang,
X. Adv. Synth. Catal. 2009, 351, 135. (c) Yao, L.-F.; Shi,
M. Eur. J. Org. Chem. 2009, 4036. (d) Lu, J.-M.; Shi, M.
J. Org. Chem. 2008, 73, 2206.
(3) For a monograph on the chemistry of allenes, please see:
Krause, N.; Hashmi, A. S. K. Modern Allene Chemistry;
Wiley-VCH: Weinheim, 2004.
(4) Selected recent articles about cyclopropyl allenes, please
see: (a) Yu, L.; Meng, B.; Huang, X. Synlett 2007, 2919.
(b) Yu, L.; Meng, B.; Huang, X. Synlett 2008, 1331.
(c) Meng, B.; Yu, L.; Huang, X. Tetrahedron Lett. 2009, 50,
1947.
(13) Procedure for the Bromohydroxylation of Compound 1f
Compound 1f (0.3 mmol) and NBS (0.3 mmol) were stirred
in acetone–H2O (2 mL; 5:1) at r.t. The reaction was
monitored by TLC (eluent: PE). When the reaction
terminated, the liquid was subjected to preparative TLC
(eluent: PE–EtOAc = 7:1) to give the adduct 3 in 76% yield.
Data for 3
Oil. IR (film): 3060, 3029, 2971, 1493, 1448, 1425, 1332,
1279, 1226, 1163, 1062, 1032, 993, 913, 843, 750, 699 cm–1.
1H NMR (600 MHz, CDCl3): d = 7.25–7.43 (m, 10 H), 4.09
(s, 2 H), 3.14 (s, 1 H) ppm. 13C NMR (150 MHz, CDCl3):
d = 44.0, 76.9, 126.4, 127.7, 128.4, 143.5. MS (EI, 70 eV):
m/z (%) = 276 (3) [M+], 105 (100). Anal. Calcd for
C14H13BrO: C, 60.67; H, 4.73. Found: C, 60.95; H, 4.88.
Synlett 2011, No. 4, 579–581 © Thieme Stuttgart · New York