LETTER
Bicyclic Core of Isatisine
381
H
H
OC(O)C4H3S
OC(O)C4H3S
O
O
OH
O
H
H
H
H
(i)
(iii)
(ii)
9
O
O
O
N
N
N
H
O
HO
t-Bu
t-Bu
20
21 (59%)
22 (72%)
Scheme 3 Reagents and conditions: (i) NaBH4, AcOH (10%), CH2Cl2, r.t.; (ii) (C4H3SCO2)4Pb, F3CPh; (iii) HS(CH2)3SH, F3CCH2OH, r.t.
(4) (a) Danishefsky, S. Nat. Prod. Rep. 2010, 27, 1114.
(b) Cheng, C. C.; Shipps, G. W.; Yang, Z.; Sun, B.;
Kawahata, N.; Soucy, K. A.; Soriano, A.; Orth, P.; Xiao, L.;
Mann, P.; Black, T. Bioorg. Med. Chem. Lett. 2009, 19,
6507. (c) Galloway, W. R. J. D.; Bender, A.; Welch, M.;
Spring, D. R. Chem. Commun. 2009, 2446. (d) Cordier, C.;
Morton, D.; Murrison, S.; Nelson, A.; O’Leary-Steele, C.
Nat. Prod. Rep. 2008, 25, 719. (e) Newman, D. J. J. Med.
Chem. 2008, 51, 2589.
(5) (a) vonNussbaum, F.; Brands, M.; Hinzen, B.; Weigand, S.;
Habich, D. Angew. Chem. Int. Ed. 2006, 45, 5072.
(b) Nören-Müller, A.; Reis-Correa, I.; Prinz, H.;
Rosenbaum, C.; Saxena, K.; Schwalbe, H. J.; Vestweber, D.;
Cagna, G.; Schunk, S.; Schwarz, O.; Schiewe, H.;
Waldmann, H. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
10606. (c) Baltz, R. H. J. Ind. Microbiol. Biotechnol. 2006,
33, 507. (d) Gullo, V. P.; McAlpine, J.; Lam, K. S.; Baker,
D.; Petersen, F. J. Ind. Microbiol. Biotechnol. 2006, 33,
523. (e) Koch, M. A.; Waldmann, H. Drug. Discovery Today
2005, 10, 471. (f) Koehn, F. E.; Carter, G. T. Nat. Rev. Drug
Discovery 2005, 4, 206. (g) Shang, S.; Tan, D. S. Curr.
Opin. Chem. Biol. 2005, 9, 248. (h) Ganesan, A. Curr.
Opin. Biotechnol. 2004, 15, 584. (i) Njardarson, J. T.; Gaul,
C.; Shan, D.; Huang, X.-Y.; Danishefsky, S. J. J. Am. Chem.
Soc. 2004, 126, 1038. (j) Rouhi, A. M. Chem. Eng. News
2003, 81, 77. (k) Breinbauer, R. B.; Vetter, I. R.; Waldmann,
H. Angew. Chem. Int. Ed. 2002, 41, 2878. (l) Hemkens, P.
H. H.; Ottenheijm, H. C. J.; Rees, D. C. Tetrahedron 1997,
53, 5643.
ecules, the van der Waals molecular surface area is in the
range 452–587 Å2,29 and the CMR value, which is a mea-
sure of the van der Waals attractive forces that act in drug-
receptor interactions30 is in the range 74–107; this is to be
expected from the common structural skeleton of these
compounds. The active molecules have ClogD, %PSA
and CMR average values of 2.5 0.76, 14.5 1.3 and
91.6 12.9, respectively. The polar surface area parameter
(PSA), which correlates the presence of polar atoms with
membrane permeability and therefore gives an indication
of drug transport properties,31 has been reported to have
an optimal value of 70 < PSA < 120 Å2 for a non-CNS
orally absorbable drug,32 and of interest is that the com-
pounds active against E. coli all lie at the lower end of this
range, with the exception of diester 18b. The use of this
approach, guided by bioactive natural product structures,
is likely to be valuable for the characterisation of chemical
space33 and may provide a useful start point for the iden-
tification of novel chemotypes for fragment-based drug
design, especially where target identity or structure is not
known.34
We have recently demonstrated the low intrinsic antibac-
terial activity of simple pyroglutamates12 and tetramates,11
but that modest manipulation of the skeletal
functionality10,35 or homologation to longer chain side-
units36 can restore activity. It may be that similar adjust-
ment of the tricyclic skeletons synthesised in this work
will be required before antibacterial bioactivity is ob-
served; however, it is noted that no antibacterial activity
of isatisine 1 per se, as opposed to the plant extracts, has
been reported,13 and it is possible that the reported anti-
bacterial plant extract activity may not result from this
compound alone.
(6) O’Shea, R.; Moser, H. E. J. Med. Chem. 2008, 51, 2871.
(7) (a) Hajduk, P. J. J. Med. Chem. 2006, 49, 6972. (b) Rees,
D. C.; Congreve, M.; Murray, C. W.; Carr, R. Nat. Rev. Drug
Discovery 2004, 3, 660.
(8) (a) Balamurugan, R.; Dekkerab, F. J.; Waldmann, H. Mol.
BioSyst. 2005, 1, 36. (b) Koch, M. A.; Wittenberg, L. O.;
Basu, S.; Jeyaraj, D. A.; Gourzoulidou, E.; Reinecke, K.;
Odermatt, A.; Waldmann, H. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 16721.
(9) Zhou, J.; Xie, G.; Yan, X. Traditional Chinese Medicines;
Ashgate: England, 2004.
(10) Anwar, M.; Cowley, A. R.; Moloney, M. G. Tetrahedron:
Asymmetry 2010, 21, 1758.
(11) Jeong, Y.-C.; Moloney, M. G. Synlett 2009, 2487.
(12) (a) Chandan, N.; Moloney, M. G. Org. Biomol. Chem. 2008,
6, 3664. (b) Hill, T.; Kocis, P.; Moloney, M. G. Tetrahedron
Lett. 2006, 47, 1461.
Supporting Information for this article is available online at
References and Notes
(1) (a) Kotra, L. P.; Golemi, D.; Vakulenko, S.; Mobashery, S.
Chem. Ind. (London) 2000, 341. (b) Niccolai, D.; Tarsi, L.;
Thomas, R. J. Chem. Commun. 1997, 2333. (c) Peet, N. P.
Drug Discovery Today 2010, 15, 583.
(13) Liu, J.-F.; Jiang, Z.-Y.; Wang, R.-R.; Zheng, Y.-T.; Chen,
J.-J.; Zhang, X.-M.; Ma, Y.-B. Org. Lett. 2007, 9, 4127.
(14) Communication from Shanghai Innovative Research Center
of Traditional Chinese Medicine.
(2) (a) Morel, C.; Mossialos, E. Br. Med. J. 2010, 340, 1115.
(b) So, A. D.; Gupta, N.; Cars, O. Br. Med. J. 2010, 340,
1091.
(15) Karadeolian, A.; Kerr, M. A. Angew. Chem. Int. Ed. 2010,
49, 1133.
(16) Andrews, M. D.; Brewster, A. G.; Moloney, M. G. Synlett
1996, 612.
(3) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461.
Synlett 2011, No. 3, 378–382 © Thieme Stuttgart · New York