2114
Y.-P. Wang, R. L. Danheiser / Tetrahedron Letters 52 (2011) 2111–2114
17. (a) Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5, 4011; (b) Kohnen, A. L.;
Further studies are underway in our laboratory to investigate
Dunetz, J. R.; Danheiser, R. L. Org. Synth. 2007, 84, 88.
the synthetic utility of 2-iodoynamides including, in particular,
their participation as novel ketenophile components in benzannu-
lation reactions with vinyl- and arylketenes.
18. (a) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett.
2004, 6, 1151; (b) Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; Kurtz, K. C. M.;
Oppenheimer, J.; Petersen, M. E.; Sagamanova, I. K.; Shen, L.; Tracey, M. R. J. Org.
Chem. 2006, 71, 4170; (c) Sagamanova, I. K.; Kurtz, K. C. M.; Hsung, R. P. Org.
Synth. 2007, 84, 359.
19. Kost, D.; Zeichner, A.; Sprecher, M. S. J. Chem. Soc., Perkin Trans. 2 1980, 317.
20. Amatore, C.; Blart, E.; Genêt, J. P.; Jutand, A.; Lemaire-Audoire, S.; Savignac, M. J.
Org. Chem. 1995, 60, 6829.
Acknowledgments
We thank the National Institutes of Health (GM 28273), Boeh-
ringer Ingelheim Pharmaceuticals, and Merck Research Laborato-
ries for generous financial support.
21. For an alternative route to 2 beginning with phenyl(trimethylsilylethynyl)
iodonium triflate, see Tanaka, K.; Takeishi, K.; Noguchi, K. J. Am. Chem. Soc.
2006, 128, 4586.
22. For an alternative preparation of ynamide 3, see Yamasaki, R.; Terashima, N.;
Sotome, I.; Komagawa, S.; Saito, S. J. Org. Chem. 2010, 75, 480.
23. Characterization data for iodoynamides: For 4: mp 56–58 °C; IR (neat) 2955,
Supplementary data
2200, 1712, 1446, 1367, 1261, 1116, 942, 759, and 698 cmÀ1 1H NMR
;
(300 MHz, CDCl3) d 7.30-7.41 (m, 5H), 4.63 (s, 2H), and 3.83 (s, 3H); 13C NMR
(125 MHz, CDCl3) d 155.8, 135.9, 128.8, 128.5, 128.4, 83.7, 54.5, 53.7, and
À13.3; HRMS-DART m/z [M+H]+ calcd for C11H10INO2, 315.9829; found
315.9835. For 8: mp 89–93 °C; IR (neat) 3032, 2188, 1597, 1496, 1455, 1363,
Supplementary data (proton and carbon NMR spectra for
iodoynamides and cyclobutenones) associated with this article
1169, 1088, and 601 cmÀ1 1H NMR (300 MHz, CDCl3) d 7.72 (d, J = 8.5 Hz, 2H),
;
7.24–7.35 (m, 7H), 4.50 (s, 2H), and 2.45 (s, 3H); 13C NMR (125 MHz, CDCl3) d
145.0, 134.8, 134.4, 130.0, 128.9, 128.7, 128.6, 127.9, 83.5, 55.4, 21.9, and
À12.5; HRMS-ESI [M+Na]+ calcd for C16H14INO2S, 433.9682; found 433.9672.
For 12: mp 95–98 °C; IR (neat) 2936, 2186, 1363, 1170, 1088, 978, and
References and notes
715 cmÀ1 1H NMR (300 MHz, CDCl3)
; d 7.77 (d, J = 8.4 Hz, 2H), 7.38 (d,
1. Wasserman, H. H.; Dehmlow, E. Tetrahedron Lett. 1962, 23, 1031.
2. For related early work in this area, see (a) Nieuwenhuis, J.; Arens, J. F. Rec. Trav.
Chim. Pays-Bas 1958, 77, 761; (b) Nieuwenhuis, J.; Arens, J. F. Rec. Trav. Chim.
Pays-Bas 1958, 77, 1153; (c) Rosebeck, B.; Arens, J. F. Rec. Trav. Chim. Pays-Bas
1962, 81, 549; (d) Hasek, R. H.; Gott, P. G.; Martin, J. C. J. Org. Chem. 1964, 29,
2510; (e) Johns, R. B.; Kriegler, A. B. Aust. J. Chem. 1964, 17, 765; (f) Ficini, J.;
Genêt, J. P. Tetrahedron Lett. 1975, 16, 2633.
3. Wasserman, H. H.; Piper, J. U.; Dehmlow, E. V. J. Org. Chem. 1973, 38, 1451.
4. (a) Hassner, A.; Dillon, J. L., Jr. J. Org. Chem. 1983, 48, 3382; (b) Danheiser, R. L.;
Sard, H. Tetrahedron Lett. 1983, 24, 23; (c) Danheiser, R. L.; Savariar, S.; Cha, D.
D. Org. Synth. 1990, 68, 32.
5. For reviews, see: (a) Hyatt, J. A.; Raynolds, P. W. In Organic Reactions; Paquette,
L. A., Ed.; Wiley: New York, 1994; Vol. 45, pp 159–646; (b) Tidwell, T. T. Ketenes,
2nd ed.; John Wiley & Sons: Hoboken, NJ, 2006; (c)Science of Synthesis: Houben
Weyl Methods of Molecular Transformations; Danheiser, R. L., Ed.; Thieme:
Stuttgart, 2005; Vol. 23,.
6. For reviews, see: (a) Ficini, J. Tetrahedron 1976, 32, 1449; (b) Himbert, G. In
Methoden der Organischen Chemie (Houben Weyl); Kropf, E., Schaumann, E., Eds.;
Stuttgart: Germany, 1993; Vol. E15e, pp 3146–3148; (c) Zificsak, C. A.; Mulder,
J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001, 57, 7575.
7. Silyloxy-substituted alkynes also react with ketenes, affording 3-
(trialkylsilyloxy)cyclobutenones in good yield. See (a) Danheiser, R. L.;
Nishida, A.; Savariar, S.; Trova, M. P. Tetrahedron Lett. 1988, 29, 4917; (b)
Kowalski, C. J.; Lal, G. S. J. Am. Chem. Soc. 1988, 110, 3693.
J = 8.4 Hz, 2H), 3.07 (s, 3H), and 2.47 (s, 3H); 13C NMR (125 MHz, CDCl3) d
145.2, 133.3, 130.1, 128.0, 84.7, 38.9, 21.9, and À14.5; HRMS-DART m/z [M+H]+
calcd for C10H10INO2S, 335.9550; found 335.9565.
24. Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. 1998, 37, 489.
25. Prepared from (trimethylsilyl)acetylene by reaction with NBS and catalytic
AgNO3 according to the method of Hofmeister, H.; Annen, K.; Laurent, H.;
Wiechert, R. Angew. Chem., Int. Ed. Engl. 1984, 23, 727.
26. Rubin, Y.; Lin, S. S.; Knobler, C. B.; Anthony, J.; Boldi, A. M.; Diederich, F. J. Am.
Chem. Soc. 1991, 113, 6943.
27. (a) Williams, J. W.; Hurd, C. D. J. Org. Chem. 1940, 5, 122; (b) Hanford, W. E.;
Sauer, J. C. In Organic Reactions; Adams, R., Ed.; Wiley: New York, 1946; Vol. 3,
pp 108–140.
28. Reaction at higher concentration led to precipitation of the cyclobutenone
product and clogging at the outlet of the needle in the reaction mixture.
29. Representative procedure: Ketene was generated by pyrolysis of acetone over an
electrically heated metal filament using the apparatus described by Williams
and Hurd. A 20-mL test tube equipped with a stir bar, rubber septum, and
argon inlet needle was charged with iodo ynamide 12 (0.188 g, 0.560 mmol)
and 11.2 mL of THF. The argon inlet needle was replaced with a 15-gauge
needle connected via Tygon tubing to the ketene generator. The septum was
fitted with an outlet needle connected via tubing to a column of CaSO4 leading
to a trap of H2O. Ketene was bubbled into the pale yellow reaction mixture
with vigorous stirring at rt over a period of 4 h. The resulting brown solution
was then concentrated to afford 0.308 g of
a brown solid. Column
8. For examples, see: (a) Kuehne, M. E.; Sheeran, P. J. J. Org. Chem. 1968, 33, 4406;
(b) Truce, W. E.; Bavry, R. H.; Bailey, P. S., Jr. Tetrahedron Lett. 1968, 9, 5651; (c)
Delaunois, M.; Ghosez, L. Angew. Chem., Int. Ed. Engl. 1969, 8, 72; (d) Ficini, J.;
Pouliquen, J. Tetrahedron Lett. 1972, 13, 1135; (e) Himbert, G. Liebigs Ann. Chem.
1979, 829; (f) Barbaro, G.; Battaglia, A.; Giorgianni, P. J. Org. Chem. 1987, 52,
3289; (g) Schulte, N.; Möller, M. H.; Rodewald, U.; Würthwein, E.-U. Chem. Ber.
1994, 127, 1287.
chromatography on 20 g of silica gel (gradient elution with 15–55% EtOAc–
hexanes) afforded 0.200 g of an off-white solid. Recrystallization from 3 mL of
CH3CN at À20 °C furnished 0.181 g (86%) of cyclobutenone 15 as colorless
needles.
30. Strong J-coupling was observed between the alkene carbon bearing the nitrogen
substituent and the C-4 methylene protons. Strong coupling was also observed
between the C-1 carbonyl carbon and these protons. Only weak coupling of the
alkene carbon bearing iodine to the methylene protons was noted.
31. Characterization data for cyclobutenones: For 15: mp 160 °C (dec); IR (neat)
9. Kohnen, A. L.; Mak, X. Y.; Lam, T. Y.; Dunetz, J. R.; Danheiser, R. L. Tetrahedron
2006, 62, 3815.
10. For reviews, see: (a) Wong, H. N. C.; Lau, K.-L.; Tam, K.-F. Top. Curr. Chem. 1986,
133, 84; (b) Bellus, D.; Ernst, B. Angew. Chem., Int. Ed. Engl. 1988, 27, 820;
(c)Methoden der Organischen Chemie (Houben Weyl); de Meijere, A., Ed.;
Thieme: Stuttgart, 1997; Vol. E17f, (d) Moore, H. W.; Yerxa, B. R. In Advances
in Strain in Organic Chemistry; Halton, B., Ed.; Jai Press: London, 1995; Vol. 4, pp
81–162; (e) Namyslo, J. C.; Kaufmann, D. E. Chem. Rev. 2003, 103, 1485.
11. (a) Danheiser, R. L.; Gee, S. K. J. Org. Chem. 1984, 49, 1672; (b) Danheiser, R. L.;
Brisbois, R. G.; Kowalczyk, J. J.; Miller, R. F. J. Am. Chem. Soc. 1990, 112, 3093; (c)
Dudley, G. B.; Takaki, K. S.; Cha, D. D.; Danheiser, R. L. Org. Lett. 2000, 2, 3407.
and references cited therein.
12. England, D. C.; Krespan, C. G. J. Org. Chem. 1970, 35, 3312.
13. Dimerizations of chloroketenes have also been reported; for examples, see Ref.
5.
14. For reviews discussing the synthesis of simple halo acetylenes, see (a) Hopf, H.;
Witulski, B. In Modern Acetylene Chemistry; Stang, P. J., Diederich, F., Eds.; VCH:
Weinheim, 1995; pp 33–66; (b) Brandsma, L. Synthesis of Acetylenes, Allenes,
and Cumulenes, Methods and Techniques; Elsevier Ltd: Oxford, 2004. pp 191–
202.
2924, 1781, 1757, 1563, 1405, 1371, 1162, 1003, and 668 cmÀ1 1H NMR
;
(500 MHz, CDCl3) d 7.74 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 3.80 (s, 2H),
3.64 (s, 3H), and 2.49 (s, 3H); 13C NMR (125 MHz, CDCl3) d 182.6, 166.7, 146.3,
134.4, 130.8, 127.7, 57.1, 51.5, 35.8, and 21.9; HRMS-DART m/z [M+H]+ calcd
for C12H12INO3S, 377.9655; found 377.9639. For 16: IR (neat) 3064, 3033, 2928,
1763, 1557, 1373, 1319, 1172, and 1048 cmÀ1 1H NMR (500 MHz, CDCl3) d
;
7.45 (d, J = 8.5 Hz, 2H), 7.29–7.36 (m, 3H), 7.20–7.28 (m, 4H), 5.36 (s, 2H), 3.82
(s, 2H), and 2.42 (s, 3H); 13C NMR (125 MHz, CDCl3) d 182.2, 166.6, 146.0,
135.4, 135.0, 130.3, 129.0, 128.3, 127.9, 127.6, 57.9, 51.5, 51.4, and 21.8;
HRMS-DART m/z [M+H]+ calcd for C18H16INO3S, 453.9968; found 453.9959. For
17: IR (neat) 3032, 2956, 1767, 1746, 1573, 1449, 1353, 1223, 1113, and
1040 cmÀ1 1H NMR (500 MHz, CDCl3) d 7.27–7.40 (m, 5H), 5.27 (s, 2H), 3.89 (s,
;
2H), and 3.85 (s, 3H); 13C NMR (125 MHz, CDCl3) d 183.5, 168.3, 153.2, 136.0,
129.0, 128.2, 127.0, 59.2, 54.9, 52.1, and 50.0; HRMS-DART m/z [M+H]+ calcd
for C13H12INO3, 357.9935; found 357.9922.
32. Solutions of each ynamide (0.20 mmol) in THF (4 mL) containing 1,4-
dimethoxybenzene (0.20 mmol) as internal standard were simultaneously
treated with ketene which was generated as described above29 and then split
into two streams prior to introduction into the reaction mixtures. Aliquots
were analyzed by 1H NMR spectroscopy (500 MHz, CDCl3) at 1-h intervals to
determine the concentration of ynamide and cyclobutenone versus the
internal standard.
15. (a) Verboom, W.; Westmijze, H.; Bos, H. J. T.; Vermeer, P. Tetrahedron Lett. 1978,
16, 1441; (b) Sörensen, H.; Greene, A. E. Tetrahedron Lett. 1990, 31, 7597.
16. For recent reviews, see (a) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu,
Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064; (b) Evano, G.; Coste, A.;
Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840–2859.