4
Tetrahedron
temperature itself (Scheme 7). Fe3O4-OSO3H catalysed C-N
Addition of N,N-dimethylaniline or N-methylaniline and
aldehyde may result in the formation of iminium intermediate.30
Nucleophilic addition of indole to the iminium intermediate
could result in the formation of diarylmethyl indole and
aminoalkylated indole products.
bond forming reaction was found to be general for aldehydes
with electron donating and electron withdrawing substituents
(Figure 3). To further improve the application of this
heterogeneous catalyst system, we have performed gram scale
synthesis of representative 3a and 5a with 10 mmol of substrates
and the corresponding products were obtained in 84% and 85%
yields respectively.
It is of interest to further extend the application of Fe3O4-
OSO3H catalysis to potential bioactive skeleton synthesis.
Oxindole skeletons are widely distributed in several natural
products and bioactive molecules.31 Mondal and co-workers
reported that 3,3′-di(indolyl)oxindole skeleton has good
spermicidal
activity.32
Fe3O4-OSO3H
catalysed
3,3′-
di(indolyl)oxindole synthesis was not successful under neat
condition. In ethanol, 3,3′-di(indolyl)oxindole was obtained in
92% yield (Scheme 9).
Scheme 7. Fe3O4-OSO3H catalysed C-N bond forming reaction
Scheme 9. Synthesis of 3,3′-di(indolyl)oxindole derivatives
In conclusion, we have developed an efficient and convenient
method for the synthesis of diversely functionalized indole
derivatives. All the products were obtained in good to excellent
yield and the catalyst was reusable up to five times without much
loss in catalytic activity.
Acknowledgements
S.S.G. thanks DST for DST-Fast Track Grant (No: SR/FT/CS-
09/2011). The authors thank the SASTRA University for
providing lab space and NMR facility. J.K thanks SASTRA
University for financial assistance. S.S.G. thanks Prof. M.
Periasamy for his constant encouragement and support.
Figure 3. Synthesized diarylmethyl indole and
aminoalkylated indole
The Fe3O4-OSO3H catalysed formation of diarylmethyl indole
and aminoalkylated indole can be rationalized by the considering
the following mechanism (Scheme 8).
References and notes
1. (a) Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Green Chem. 2014, 16, 2958-
2975. (b) Jiang, B.; Rajale, T.; Wever, W.; Tu, S. J.; Li, G. Chem. Asian
J. 2010, 5, 2318-2335.
2. (a) Sheldon, R. A. Green Chem. 2005, 7, 267-278. (b) Singh, M. S.;
Chowdhury, S. RSC Adv. 2012, 2, 4547-4592.
3. Zhang, M. -Z.; Chen, Q.; Yang, G. -F. Eur. J. Med. Chem. 2015, 89,
421-441.
4. Pandeya, S. N.; Sriram, D.; Nath, G.; Clercq, E. D. Eur. J. Med. Chem.
2000, 35, 249-255.
5. (a) Rajanarendar, E.; Reddy, K. G.; Ramakrishna, S.; Reddy, M. N.;
Shireesha, B.; Durgaiah, G.; Reddy, Y. N. Bioorg. Med. Chem. Lett.
2012, 22, 6677-6680. (b) Rao, V. K.; Chhikara, B. S.; Shirazi, A. N.;
Tiwari, R.; Parang, K.; Kumar, A. Bioorg. Med. Chem. Lett. 2011, 21,
3511-3514.
6. Peng, W.; Świtalska, M.; Wang, L.; Mei, Z.-W.; Edazawa, Y.; Pang, C.-
Q.; El-Sayed, I. E.-T.; Wietrzyk, J.; Inokuchi, T. Eur. J. Med. Chem.
2012, 58, 441-451.
7. Yamuna, E.; Kumar, R. A.; Zeller, M.; Prasad, K. J. R. Eur. J. Med.
Chem. 2012, 47, 228-238.
8. Reddy, B. V. S.; Ganesh, A. V.; Vani, M.; Murthy, T. R.; Kalivendi, S.
V.; Yadav, J. S. Bioorg. Med. Chem. Lett. 2014, 24, 4501-4503.
9. Panda, G.; Parai, M. K.; Das, S. K.; Shagufta, M.; Sinha, M.;
Chaturvedi, V.; Srivastava, A. K.; Manju, Y. S.; Gaikwad A. N.; Sinha,
S. Eur. J. Med. Chem. 2007, 42, 410-419.
10. Rani, P.; Srivastava, V. K.; Kumar, A. Eur. J. Med. Chem. 2004, 39,
449-452.
11. Nasr-Esfahani, M.; Hoseini, S. J.; Montazerozohori, M.; Mehrabi, R.;
Nasrabadi, H. J. Mol. Catal. A: Chem. 2014, 382, 99-105.
12. Saadatjoo, N.; Golshekan, M.; Shariati, S.; Azizi, P.; Nemati, F.
Arabian J. Chem. 2012, DOI: 10.1016/j.arabjc.2012.11.018.
Scheme 8. Mechanism of formation of diarylmethyl indoles and
aminoalkylated indoles