Communication
ChemComm
(e) L. Hairong, S. Sun, T. Salim, S. Bomma, A. C. Grimsdale and
Y. M. Lam, J. Polym. Sci., Part A: Polym. Chem., 2011, 50, 250;
( f ) A. Rajendran, T. Tsuchiya, S. Hirata and T. D. Iordanov, J. Phys.
Chem. A, 2012, 116, 12153; (g) B. M. Kobilka, A. V. Dubrovskiy,
M. D. Ewan, A. L. Tomlinson, R. C. Larock, S. Chaudhary and
M. Jeffries-El, Chem. Commun., 2012, 48, 8919; (h) Y. Zhen,
N. Obata, Y. Matsuo and E. Nakamura, Chem. – Asian J., 2012,
migratory cycloisomerization, but the consecutive benzo[c]thiophene
formation depends on the nature of the counteranion. Use of AuCl3
led to the in situ formation of HAuCl4 which efficiently catalyzed
the desired transformation. While it is often unclear whether
similar cycloisomerizations are proton- or metal-catalyzed, we
have clearly demonstrated that, in our case, a proton is the
catalytic species. However, the importance of the gold counter-
anion cannot be neglected. This approach has led to the desired
products 3 in 15–92% yields. A catalyst loading of 5–10 mol%
was considered optimal as a compromise between reaction time
and product stability. This approach could be applied to widely
substituted ortho-halobenzaldehydes and to heterocyclic cores as
well, however it is restricted to terminal alkynes. The obtained
benzo[c]thiophenes are mainly of interest as oligomers in
organic photovoltaic cells (OPV), along with a number of other
earlier discussed applications.
´
´
7, 2644; (i) C. O. Sanchez, J. C. Bernede, L. Cattin and F. R. Dıaz,
Synth. Met., 2011, 161, 2335; ( j) Q. Liu, F.-T. Kong, T. Okujima,
H. Yamada, S.-Y. Dai, H. Uno, N. Ono, X.-Z. You and Z. Shen,
Tetrahedron Lett., 2012, 53, 3264; (k) G. Long, X. Wan, P. Yun,
J. Zhou, Y. Liu, M. Li, M. Zhang and Y. Chen, Chin. J. Chem., 2013,
31, 1391; (l) S. Guenes, H. Neugebauer and N. S. Sariciftci, Chem. Rev.,
2007, 107, 1324.
´
7 (a) T.-Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J.-R. Pouliot, S. Wakim,
J. Zhou, M. Leclerc, Z. Li, J. Ding and Y. Tao, J. Am. Chem. Soc., 2011,
133, 4250; (b) C. M. Amb, S. Chen, K. R. Graham, J. Subbiah,
C. E. Small, F. So and J. R. Reynolds, J. Am. Chem. Soc., 2011,
133, 10062; (c) S. C. Price, A. C. Stuart, L. Yang, H. Zhou and W. You,
J. Am. Chem. Soc., 2011, 133, 4625; (d) H. Zhou, L. Yang, A. C. Stuart,
S. C. Price, S. Liu and W. You, Angew. Chem., Int. Ed., 2011, 50, 2995.
8 R. H. L. Kiebooms, P. J. A. Adriaensens, D. J. M. Vanderzande and
J. M. J. V. Gelan, J. Org. Chem., 1997, 62, 1473.
9 S. Ito, T. Suzuki, T. Kawai and T. Iyoda, Synth. Met., 2000, 114, 235.
10 (a) N. Dieltiens and C. V. Stevens, Org. Lett., 2007, 9, 465; (b) T. S. A.
Heugebaert and C. V. Stevens, Org. Lett., 2009, 11, 5018; (c) T. S. A.
Heugebaert, L. P. D. Vervaecke and C. V. Stevens, Org. Biomol.
Chem., 2011, 9, 4791.
The authors are indebted to the Research Foundation
Flanders (FWO Vlaanderen) for financing pre- and postdoctoral
research.
Notes and references
11 For O and N analogues, see: (a) F. M. Istrate and F. Gagosz, Org. Lett.,
2007, 9, 3181; (b) F. M. Istrate and F. Gagosz, Beilstein J. Org. Chem.,
2011, 7, 878. For selected reviews, see: (c) A. S. Dudnik, N. Chernyak
and V. Gevorgyan, Aldrichimica Acta, 2010, 43, 37; (d) A. Corma,
1 D.-T. Hsu and C.-H. Lin, J. Org. Chem., 2009, 74, 9180.
2 (a) R. Jin and J. Zhang, J. Phys. Chem. A, 2013, 117, 8285;
(b) N. S. Kumar and A. K. Mohanakrishnan, Tetrahedron, 2010,
66, 5660; (c) N. S. Kumar, J. A. Clement and A. K. Mohanakrishnan,
Tetrahedron, 2009, 65, 822; (d) A. K. Mohanakrishnan, N. S. Kumar and
P. Amaladass, Tetrahedron Lett., 2008, 49, 4792; (e) A. K. Mohanakrishnan,
J. A. Clement, P. Amaladass and V. S. Thirunavukkarasu, Tetrahedron Lett.,
2007, 48, 8715.
´
A. Leyva-Perez and M. J. Sabater, Chem. Rev., 2011, 111, 1657;
(e) A. V. Gulevich, A. S. Dudnik, N. Chernyak and V. Gevorgyan,
Chem. Rev., 2013, 113, 3084; ( f ) N. T. Patil and Y. Yamamoto, Chem.
Rev., 2008, 108, 3395.
12 (a) C. Macleod, G. J. McKiernan, E. J. Guthrie, L. J. Farrugia, D. W.
Hamprecht, J. Macritchie and R. C. Hartley, J. Org. Chem., 2003,
68, 387; (b) M. Firouz, B. Ghasem and O. Afsane, Phosphorus, Sulfur
Silicon Relat. Elem., 2006, 181, 1445.
3 R. Jin, J. Fluorine Chem., 2014, 162, 26.
4 T. J. L. Silva, P. J. Mendes, M. H. Garcia, M. P. Robalo, J. P. P.
Ramalho, A. J. P. Carvalho, M. Buechert, C. Wittenburg and J. Heck,
Eur. J. Inorg. Chem., 2013, 3506.
13 (a) M. Jean, J. Renault, P. van de Weghe and N. Asao, Tetrahedron
Lett., 2010, 51, 378; (b) I. Nakamura, T. Sato and Y. Yamamoto, Angew.
Chem., Int. Ed., 2006, 45, 4473; (c) J. Li, K. Ji, R. Zheng, J. Nelson and
L. Zhang, Chem. Commun., 2014, 50, 4130; (d) P. W. Davies and S. J.-C.
Albrecht, Chem. Commun., 2008, 238.
5 (a) J. A. Clement, P. Gunasekaran and A. K. Mohanakrishnan,
Tetrahedron, 2009, 65, 4113; (b) S. T. Meek, E. E. Nesterov and
T. M. Swager, Org. Lett., 2008, 10, 2991.
6 (a) J. D. Douglas, G. Griffini, T. W. Holcombe, E. P. Young, O. P. Lee,
´
M. S. Chen and J. M. J. Frechet, Macromolecules, 2012, 45, 4069; (b) M. R.
Raj and S. Anandan, RSC Adv., 2013, 3, 14595; (c) M. Garcia, L. Fomina 14 A. S. K. Hashmi, Catal. Today, 2007, 122, 211.
and S. Fomine, Synth. Met., 2010, 160, 2515; (d) Y. Qin, J. Y. Kim, 15 (a) R. Huettel and H. Forkl, Chem. Ber., 1972, 105, 1664; (b) R. Huettel
C. D. Frisbie and M. A. Hillmyer, Macromolecules, 2008, 41, 5563;
and H. Forkl, Chem. Ber., 1972, 105, 2913.
732 | Chem. Commun., 2015, 51, 729--732
This journal is ©The Royal Society of Chemistry 2015