ACS Applied Materials & Interfaces
Research Article
(18) Yuan, C. P.; Wu, Q.; Li, Q.; Duan, Q.; Li, Y. H.; Wang, H. G.
Nanoengineered Ultralight Organic Cathode Based on Aromatic
Carbonyl Compound/Graphene Aerogel for Green Lithium and
Sodium Ion Batteries. ACS Sustainable Chem. Eng. 2018, 6, 8392−
8399.
ORCID
Notes
The authors declare no competing financial interest.
(19) Yuan, C. P.; Wu, Q.; Shao, Q.; Li, Q.; Gao, B.; Duan, Q.; Wang,
H. G. Free-Standing and Flexible Organic Cathode based on
Aromatic Carbonyl Compound/carbon nanotube Composite for
Lithium and Sodium Organic Batteries. J. Colloid Interface Sci. 2018,
517, 72−79.
(20) Geng, J.; Bonnet, J. P.; Renault, S.; Dolhem, F.; Poizot, P.
Evaluation of Polyketones with Ncyclic Structure as Electrode
Material for Electrochemical Energy Storage: Case of Tetraketopiper-
azine Unit. Energy Environ. Sci. 2010, 3, 1929−1933.
(21) Chen, H.; Armand, M.; Demailly, G.; Dolhem, F.; Poizot, P.;
Tarascon, J. M. From Biomass to a Renewable LiXC6O6 Organic
Electrode for Sustainable Li-Ion Batteries. ChemSusChem 2008, 1,
348−355.
ACKNOWLEDGMENTS
■
This work was financially supported by the Science &
Technology Department of Jilin Province (No.
20170101177JC).
REFERENCES
■
(1) Armand, M.; Tarascon, J. M. Building Better Batteries. Nature
2008, 451, 652−657.
(2) Lewis, N. S. Research Opportunities to Advance Solar Energy
Utilization. Science 2016, 351, aad1920.
(22) Yokoji, T.; Matsubara, H.; Satoh, M. Rechargeable Organic
Lithium-ion Batteries using Electron-Deficient Benzoquinones as
Positive-Electrode Materials with High Discharge Voltages. J. Mater.
Chem. A 2014, 2, 19347−19354.
(3) Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D.
Challenges in the Development of Advanced Li-ion Batteries: A
Review. Energy Environ. Sci. 2011, 4, 3243−3262.
̈
(4) Muench, S.; Wild, A.; Friebe, C.; Haupler, B.; Janoschka, T.;
(23) Wang, Y.; Liu, Z.; Liu, H.; Liu, H.; Li, B.; Guan, S. A Novel
High-Capacity Anode Material Derived from Aromatic Imides for
Lithium-Ion Batteries. Small 2018, 14, No. 1704094.
Schubert, U. S. Polymer-based Organic Batteries. Chem. Rev. 2016,
116, 9438−9484.
(5) Liang, Y.; Tao, Z.; Chen, J. Organic Electrode Materials for
Rechargeable Lithium Batteries. Adv. Energy Mater. 2012, 2, 742−769.
(6) Song, Z.; Zhou, H. Towards Sustainable and Versatile Energy
Storage Devices: An Overview of Organic Electrode Materials. Energy
Environ. Sci. 2013, 6, 2280−2301.
(24) Ahmad, A.; Meng, Q. H.; Melhi, S.; Mao, L. J.; Zhang, M.; Han,
B. H.; Lu, K.; Wei, Z. X. A Hierarchically Porous Hypercrosslinked
and Novel Quinone based Stable Organic Polymer Electrode for
Lithium-Ion Batteries. Electrochim. Acta 2017, 255, 145−152.
(25) Zhao, Q.; Wang, J.; Chen, C.; Ma, T.; Chen, J. Nanostructured
Organic Electrode Materials Grown on Graphene with Covalent-bond
Interaction for High-Rate and Ultra-Long-Life Lithium-Ion Batteries.
Nano Res. 2017, 10, 4245−4255.
(26) Zhu, Z. Q.; Hong, M. L.; Guo, D. S.; Shi, J. F.; Tao, Z. L.;
Chen, J. All-Solid-State Lithium Organic Battery with Composite
Polymer Electrolyte and Pillar [5] Quinone Cathode. J. Am. Chem.
Soc. 2014, 136, 16461−16464.
(27) Mukherjee, D.; Gowda, Y. K. G.; Kotresh, H. M. N.; Sampath,
S. Porous, Hyper-Cross-Linked, Three-Dimensional Polymer as
Stable, High Rate Capability Electrode for Lithium-Ion Battery.
ACS Appl. Mater. Interfaces 2017, 9, 19446−19454.
(28) Milton, R. D.; Hickey, D. P.; Abdellaoui, S.; Lim, K.; Wu, F.;
Tan, B. X.; Minteer, S. D. Rational Design of Quinones for High
Power Density Biofuel Cells. Chem. Sci. 2015, 6, 4867−4875.
(29) Letizia, J. A.; Cronin, S.; Ortiz, R. P.; Facchetti, A.; Ratner, M.
A.; Marks, T. J. Phenacyl-Thiophene and Quinone Semiconductors
Designed for Solution Processability and Air-Stability in High
Mobility n-Channel Field-Effect Transistors. Chem. - Eur. J. 2010,
16, 1911−1928.
(7) Visco, S. J.; Mailhe, C. C.; Jonghe, L. C. D.; Armand, M. B. A
Novel Class of Organosulfur Electrodes for Energy Storage. J.
Electrochem. Soc. 1989, 136, 661−664.
(8) Suga, T.; Konishi, H.; Nishide, H. Photocrosslinked Nitroxide
Polymer Cathode-Active Materials for Application in an Organic-
based Paper Battery. Chem. Commun. 2007, 1730−1732.
(9) Kim, Y.; Jo, C.; Lee, J.; Lee, C. W.; Yoon, S. An Ordered
Nanocomposite of Organic Radical Polymer and Mesocellular Carbon
Foam as Cathode Material in Lithium ion Batteries. J. Mater. Chem.
2012, 22, 1453−1458.
(10) Liang, Y. L.; Zhang, P.; Chen, J. Function-Oriented Design of
Conjugated Carbonyl Compound Electrodes for High Energy
Lithium Batteries. Chem. Sci. 2013, 4, 1330−1337.
(11) Wang, H. G.; Yuan, S.; Ma, D. L.; Huang, X. L.; Meng, F. L.;
Zhang, X. B. Tailored Aromatic Carbonyl Derivative Polyimides for
High-Power and Long-Cycle Sodium-Organic Batteries. Adv. Energy
Mater. 2014, 4, No. 1301651.
(12) Genorio, B.; Pirnat, K.; Cerc-Korosec, R.; Dominko, R.;
Gaberscek, M. Electroactive Organic Molecules Immobilized onto
Solid Nanoparticles as a Cathode Material for Lithium-Ion Batteries.
Angew. Chem., Int. Ed. 2010, 49, 7222−7224.
(13) Song, C. K.; Eckstein, B. J.; Tam, T. L. D.; Trahey, L.; Marks,
T. J. Conjugated Polymer Energy Level Shifts in Lithium-Ion Battery
Electrolytes. ACS Appl. Mater. Interfaces 2014, 6, 19347−19354.
(14) Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.;
Cui, Y. Stable Li-ion Battery Anodes by In-Situ Polymerization of
Conducting Hydrogel to Conformally Coat Silicon Nanoparticles.
Nat. Commun. 2013, 4, No. 1943.
(30) Amin, K.; Meng, Q. H.; Ahmad, A.; Cheng, M.; Zhang, M.;
Mao, L. J.; Lu, K.; Wei, Z. X. A Carbonyl Compound-Based Flexible
Cathode with Superior Rate Performance and Cyclic Stability for
Flexible Lithium-Ion Batteries. Adv. Mater. 2018, 30, No. 1703868.
(31) Lu, Y.; Zhao, Q.; Miao, L.; Tao, Z.; Niu, Z.; Chen, J. Flexible
and Free-Standing Organic/Carbon Nanotubes Hybrid Films as
Cathode for Rechargeable Lithium-Ion Batteries. J. Phys. Chem. C
2017, 121, 14498.
(32) Yamamoto, T.; Etori, H. Poly(anthraquinone)s Having a. π-
Conjugation System along the Main Chain. Synthesis by Organo-
metallic Polycondensation, Redox Behavior, and Optical Properties.
Macromolecules 1995, 28, 3371−3379.
(33) Song, Z. P.; Qian, Y. M.; Gordin, M. L.; Tang, D. H.; Xu, T.;
Otani, M.; Zhan, H.; Zhou, H. S.; Wang, D. H. Polyanthraquinone as
a Reliable Organic Electrode for Stable and Fast Lithium Storage.
Angew. Chem., Int. Ed. 2015, 54, 13947.
(15) Ma, T.; Zhao, Q.; Wang, J.; Pan, Z.; Chen, J. A Sulfur
Heterocyclic Quinone Cathode and a Multifunctional Binder for a
High-Performance Rechargeable Lithium-Ion Battery. Angew. Chem.
2016, 128, 6538−6542.
(16) Kim, K. C.; Liu, T. Y.; Lee, S. W.; Jang, S. S. First-Principles
Density Functional Theory Modeling of Li Binding: Thermodynamics
and Redox Properties of Quinone Derivatives for Lithium-Ion
Batteries. J. Am. Chem. Soc. 2016, 138, 2374−2382.
(34) Yamamoto, T. π-Conjugated Polymers with Electronic and
Optical Functionalities: Preparation by Organometallic Polyconden-
sation, Properties, and Applications. Macromol. Rapid Commun. 2002,
23, 583−606.
(17) Shin, D. S.; Park, M.; Ryu, J.; Hwang, I.; Seo, J. K.; Seo, K.;
Cho, J.; Hong, S. Y. Nonaqueous Arylated Quinone Catholytes for
Lithium-Organic Flow Batteries. J. Mater. Chem. A 2018, 6, 14761−
14768.
28807
ACS Appl. Mater. Interfaces 2019, 11, 28801−28808