detection of specific RNA transcripts in cell-free systems. To
apply the methodology to living cells, the quenching efficiency
and chemical properties of the Cy3–BHQ1 conjugate need to
be optimized by changing the linker length or the structure of
the fluorophore. Aptamers with a lower Kd for BHQ1 are also
needed for real-time detection of expression of low-abundance
mRNAs. Optimization of the stem–loop structure of A1 may
generate a short RNA aptamer with a Kd in the nM or
pM range.
This work was supported in part by grants from
MEXT(JSPS) KAKENHI (21310140 to M.U., 21870016 to
S.S., and 20611007 to Y.K.), and the Naito Foundation
(M.U.). We thank the members of the Uesugi research group
for helpful discussion and support. We also thank T. Morii for
access to his sequencing and mass spectroscopy instruments.
The Kyoto research group participates in the Global COE
program ‘‘Integrated Material Sciences’’ (#B-09). A.M.
is an Inoue Fellow supported by the Inoue Foundation of
Science.
Fig.
6
(A) Schematic diagram of DNA templates for GFP
expression. (B) mRNAs encoded by GFP-A1 (blue) or GFP-A1m
(red), monitored by 610 nm fluorescence of conjugate 2 (open circles).
Protein synthesis monitored by 495 nm fluorescence of GFP (filled
squares). Data were normalized to fluorescence in a sample lacking the
DNA template. (C) Western blot analyses of GFP expression by
anti-His antibody. Loaded amounts of overall proteins are essentially
the same (shown in Fig. S9, ESIw).
Notes and references
1 (a) D. St Johnston, Nat. Rev. Mol. Cell Biol., 2005, 6, 363–375;
(b) A. J. Rodriguez, J. Condeelis, R. H. Singer and J. B. Dictenberg,
Semin. Cell Dev. Biol., 2007, 18, 202–208; (c) S. Tyagi,
Nat. Methods, 2009, 6, 331–338; (d) K. C. Martin and
A. Ephrussi, Cell (Cambridge, Mass.), 2009, 136, 719–730.
2 (a) S. Tyagi and F. R. Kramer, Nat. Biotechnol., 1996, 14, 303–308;
(b) D. L. Sokol, X. L. Zhang, P. Z. Lu and A. M. Gewitz, Proc.
Natl. Acad. Sci. U. S. A., 1998, 95, 11538–11543; (c) T. Matsuo,
Biochim. Biophys. Acta, Gen. Subj., 1998, 1379, 178–184;
(d) J. Perlette and W. H. Tan, Anal. Chem., 2001, 73, 5544–5550;
(e) D. P. Bratu, B. J. Cha, M. M. Mhlanga, F. R. Kramer and
S. Tyagi, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 13308–13313;
(f) X. H. Peng, Z. H. Cao, J. T. Xia, G. W. Carlson, M. M. Lewis,
W. C. Wood and L. Yang, Cancer Res., 2005, 65, 1909–1917;
(g) W. J. Rhee, P. J. Santangelo, H. J. Jo and G. Bao, Nucleic
Acids Res., 2008, 36, e30.
Similar results were obtained for conjugate 3 (ESIw, Fig. S5).
Densitometric analysis of the transcript bands on a gel showed
that amounts of A1 and A1m transcripts were similar at given
time points (Fig. 5C; ESIw, Fig. S6). Thus, conjugate 2 can be
used to monitor specific RNA transcripts in real-time in a
cell-free system.
We next examined whether specific protein-coding mRNA
transcripts could be detected in cell extracts. We used an
expression vector encoding GFP with A1 or A1m in 30 UTR
as a reporter gene (Fig. 6A). The templates were transcribed
and translated in vitro by a coupled transcription/translation
reaction. The fluorescence intensities of conjugate 2 (610 nm)
and GFP (495 nm) were simultaneously monitored during
transcription and translation. The sample containing the
GFP-A1 vector showed an immediate and time-dependent
increase in fluorescence of conjugate 2, while expression
of GFP-A1m had little effect (Fig. 6B; ESIw, S7AB). The
fluorescence of GFP emerged B30 min later than that of
conjugate 2, due to the delay in protein synthesis from mRNA.
Western blot analysis confirmed that GFP proteins were
expressed equally from the A1 and A1m constructs (Fig. 6C;
S7C, ESIw). These results demonstrate that conjugate 2 is
capable of detecting a specific protein-coding mRNA in cell
extracts.
3 (a) E. Bertrand, P. Chartrand, M. Schaefer, S. M. Shenoy,
R. H. Singer and R. M. Long, Mol. Cell, 1998, 2, 437–445;
(b) D. L. Beach, E. D. Salmon and K. Bloom, Curr. Biol., 1999,
9, 569–578; (c) K. M. Forrest and E. R. Gavis, Curr. Biol., 2003, 13,
1159–1168; (d) J. Bi, X. Hu, H. H. Loh and L. N. Wei, Mol.
Pharmacol., 2003, 64, 594–599; (e) N. Daigle and J. Ellenberg,
Nat. Methods, 2007, 4, 633–636; (f) H. Liora, Z. Gadi, A.
Stella and E. G. Jeffrey, Nat. Methods, 2007, 4, 409–412;
(g) S. Mili, K. Moissoglu and I. G. Macara, Nature, 2008, 453,
115–119.
4 (a) J. R. Babendure, S. R. Adams and R. Y. Tsien, J. Am. Chem.
Soc., 2003, 125, 14716–14717; (b) B. A. Sparano and K. Koide,
J. Am. Chem. Soc., 2005, 127, 14954–14955; (c) B. A. Sparano and
K. Koide, J. Am. Chem. Soc., 2007, 129, 4785–4794; (d) S. Sando,
A. Narita, M. Hayami and Y. Aoyama, Chem. Commun., 2008,
3858–3860; (e) J. Lee, K. H. Lee, J. Jeon, A. Dragulescu-Andrasi,
F. Xiao and J. Rao, ACS Chem. Biol., 2010, 5, 1065–1074.
5 (a) G. (P.) Yang, D. D. Erdman, M. L. Tondella and B. S. Fields,
J. Virol. Methods, 2009, 162, 288–290; (b) J. G. Bruno,
M. P. Carrillo, T. Phillips, N. K. Vail and D. Hanson,
J. Fluoresc., 2008, 18, 867–876.
6 (a) A. D. Ellington and J. W. Szostak, Nature, 1990, 346, 818–822;
(b) C. Tuerk and L. Gold, Science, 1990, 249, 505–510;
(c) D. L. Robertson and G. F. Joyce, Nature, 1990, 344, 467–468.
In summary, the present study designed and demonstrated
the usefulness of fluorophore–BHQ1 conjugates for real-time
c
4714 Chem. Commun., 2011, 47, 4712–4714
This journal is The Royal Society of Chemistry 2011