Journal of the American Chemical Society
ARTICLE
(21) Lee, H. M.; Nieto-Oberhuber, C.; Shair, M. D. J. Am. Chem. Soc.
2008, 130, 16864–16866.
(37) Gonzꢀalez, C. C.; Leꢀon, E. I.; Riesco-Fagundo, C.; Suꢀarez, E.
Tetrahedron Lett. 2003, 44, 6347–6350.
(22) Flyer, A. N.; Si, C.; Myers, A. G. Nat. Chem. 2010, 2, 886–892.
(23) (a) Craft, D. T.; Gung, B. W. Tetrahedron Lett. 2008,
49, 5931–5934. (b) Dai, M.; Danishefsky, S. J. Tetrahedron Lett. 2008,
49, 6610–6612. (c) Dai, M. J.; Wang, Z.; Danishefsky, S. J. Tetrahedron
Lett. 2008, 49, 6613–6616. (d) Yamashita, S.; Iso, K.; Hirama, M. Org.
Lett. 2008, 10, 3413–3415. (e) Simmons, E. M.; Hardin, A. R.; Guo, X.;
Sarpong, R. Angew. Chem. Int. Ed. 2008, 47, 6650–6653. (f) Kurti, L.;
Czako, B.; Corey, E. J. Org. Lett. 2008, 10, 5247–5250. (g) Yamashita, S.;
Kitajima, K.; Iso, K.; Hirama, M. Tetrahedron Lett. 2009, 50, 3277–3279.
(h) Dai, M. J.; Danishefsky, S. J. Heterocycles 2009, 77, 157–161. (i) Liu,
L. Z.; Gao, Y. X.; Che, C.; Wu, N.; Wang, D. Z.; Li, C. C.; Yang, Z. Chem.
Commun. 2009, 662–664. (j) Magnus, P.; Littich, R. Org. Lett. 2009,
11, 3938–3941. (k) Frie, J. L.; Jeffrey, C. S.; Sorensen, E. J. Org. Lett.
2009, 11, 5394–5397. (l) Baumgartner, C.; Ma, S.; Liu, Q.; Stoltz, B. M.
Org. Biomol. Chem. 2010, 8, 2915–2917. (m) Simmons, E. M.;
Hardin-Narayan, A. R.; Guo, X. L.; Sarpong, R. Tetrahedron 2010,
66, 4696–4700. (n) Yu, F.; Li, G.; Gao, P.; Gong, H.; Liu, Y.; Wu, Y.;
Cheng, B.; Zhai, H. Org. Lett. 2010, 12, 5135–5137. (o) Fang, L.; Chen,
Y.; Huang, J.; Liu, L.; Quan, J.; Li, C.-C.; Yang, Z. J. Org. Chem. 2011,
76, 2479–2487. (p) Yamashita, S.; Iso, K.; Kitajima, K.; Himuro, M.;
Hirama, M. J. Org. Chem. 2011, 76, 2408–2425. For reviews and
perspectives, see: (q) Nising, C. F.; Br€ase, S. Angew. Chem. Int. Ed.
2008, 47, 9389–9391. (r) Chen, D. Y. K.; Tseng, C. C. Org. Biomol.
Chem. 2010, 8, 2900–2911. (s) Narayan, A. R. H.; Simmons, E. M.;
Sarpong, R. Eur. J. Org. Chem. 2010, 3553–3567. (t) Shi, Y.; Tian, W. S.
Chin. J. Org. Chem. 2010, 30, 515–527.
(38) Cekovic, Z. Tetrahedron 2003, 59, 8073–8090.
(39) Formation of a geminal diiodide using Suꢀarez chemistry has
been implicated previously. For an account, see: Heusler, K.; Kalvoda, C.
Steroids 1996, 61, 492–503.
(40) It is also possible that 87 was formed via E1CB elimination of
the bromide in 86, followed by reaction of the π-conjugated carbon
radical with an additional equivalent of SmI2.
(41) Barton, D. H. R.; O’Brian, R. E.; Sternhell, S. J. Chem. Soc.
1962, 470–478.
(42) Han, X. J.; Stoltz, B. M.; Corey, E. J. J. Am. Chem. Soc. 1999,
121, 7600–7605.
(43) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry: A
Guide for the Synthetic Chemist; Elsevier Science Ltd.: Oxford, UK, 2000.
(44) Song, Y.; Clizbe, L.; Bhakta, C.; Teng, W.; Li, W.; Wong, P.;
Huang, B.; Sinha, U.; Park, G.; Reed, A.; Scarborough, R. M.; Zhu, B.-Y.
Bioorg. Med. Chem. Lett. 2002, 12, 2043–2046.
(45) Askin, D.; Angst, C.; Danishefsky, S. J. Org. Chem. 1987, 52,
622–635.
(46) McCoubrey, A.; Mathieson, D. W. J. Chem. Soc. 1951, 2851–
2853.
(47) We are aware of at least two outsourcing companies that have
been hired to procure cortistatin using the route published in ref 24a.
(24) (a) Shenvi, R. A.; Guerrero, C. A.; Shi, J.; Li, C.-C.; Baran, P. S.
J. Am. Chem. Soc. 2008, 130, 7241–7243.(b) Guerrero, C. A. Ph.D.
Thesis, The Scripps Research Institute, 2008. (c) Shenvi, R. A. Ph.D.
Thesis, The Scripps Research Institute, 2008. (d) Shenvi, R. A.; Guerrero,
C. A.; Shi, J.; Li, C.; Baran, P. S. U.S. Patent 61/050,434, 2008.
(25) Gaich, T.; Baran, P. S. J. Org. Chem. 2010, 75, 4657–4673.
(26) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem. Int.
Ed. 2009, 48, 2854–2867.
(27) The BrooksꢀNorymberski method was found to be impractical
on large scale, see: Brooks, C. J.; Norymberski, J. K. Biochem. J. 1953,
55, 371–370.
(28) Bovicelli, P.; Lupattelli, P.; Mincione, E.; Prencipe, T.; Curci, R.
J. Org. Chem. 1992, 57, 2182–2184.
(29) (a) Tang, R.; Mislow, K. J. Am. Chem. Soc. 1970, 92, 2100–2104.
(b) Evans, D. A.; Andrews, G. C.; Sims, C. L. J. Am. Chem. Soc. 1971,
93, 4956–4957.
(30) Isayama, S.; Mukaiyama, T. Chem. Lett. 1989, 1071–1074.
(31) Decalin-bridged radicals have been shown to deviate from
planar geometry, see: Lloyd, R. V.; Williams, R. V. J. Phys. Chem.
1985, 89, 5379–5381.
(32) Sch€ollkopf, U.; Hupfeld, B.; Gull, R. Angew. Chem. 1986, 98,
755–756.
(33) Inoki, S.; Kato, K.; Isayama, S.; Mukaiyama, T. Chem. Lett.
1990, 19, 1869–1872.
(34) (a) Khuong-Huu, F.; Herlem, D.; Benechie, M. Bull. Soc. Chim.
Fr. 1970, 7, 2702–2705. (b) Khuong-Huu, F.; Herlem, D.; Benechie,
M. Bull. Soc. Chim. Fr. 1972, 3, 1092–1097. (c) Atta-ur-Rahman;
Choudhary, M. I. The Alkaloids; Cordell, A. G., Ed.; Academic: San
Diego, CA, 1998; Vol. 50, pp 61ꢀ108.
(35) Nakano, T.; Alonso, M.; Martín, A. Tetrahedron Lett. 1970, 11,
4929–4934.
(36) (a) Neef, G.; Cleve, G.; Ottow, E.; Seeger, A.; Wiechert, R. J. Org.
Chem. 1987, 52, 4143–4146. (b) Neef, G.; Eckle, E.; Muller-Fahrnow, A.
Tetrahedron 1993, 49, 833–840. (c) Kupchan, S. M.; Abushanab, E.;
Shamasundar, K. T.; By, A. W. J. Am. Chem. Soc. 1967, 89, 6327–6332.
(d) Kupchan, S. M.; Findlay, J. W. A.; Hackett, P.; Kennedy, R. M. J. Org.
Chem. 1972, 37, 2523–2532. (e) Barton, D. H. R.; Budhiraja, R. P.;
McGhie, J. F. J. Chem Soc. C 1969, 336–338. (f) Sakamaki, H.; Take, M.;
Matsumoto, T.; Iwadare, T.; Ichinohe, Y. J. Org. Chem. 1988, 53,
2622–2624.
8027
dx.doi.org/10.1021/ja202103e |J. Am. Chem. Soc. 2011, 133, 8014–8027