atoms. This was justified by the rigid bond test (DMSDA test)
according to Hirshfeld.35
6 C.-W. So, H. W. Roesky, J. Magull and R. B. Oswald, Angew. Chem.,
2006, 118, 4052–4054, (Angew. Chem., Int. Ed., 2006, 45, 3948–3950).
7 (a) A. Jana, D. Ghoshal, H. W. Roesky, I. Objartel, G. Schwab and D.
Stalke, J. Am. Chem. Soc., 2009, 131, 1288–1293; (b) A. Jana, H. W.
Roesky, C. Schulzke and A. Do¨ring, Angew. Chem., 2009, 121, 1126–
1129, (Angew. Chem., Int. Ed., 2009, 48, 1106–1109).
8 S.-H. Zhang, H.-X. Yeong, H.-W. Xi, K. H. Lim and C.-W. So, Chem.–
Eur. J., 2010, 16, 10250–10254.
9 (a) J. M. Smith, R. J. Lachicotte and P. L. Holland, J. Am. Chem. Soc.,
2003, 125, 15752–15753; (b) S. Pfirrmann, C. Limberg and B. Zeimer,
Dalton Trans., 2008, 6689–6691.
Crystallographic data for compound 3. C15H27BN2Si, M =
274.29 g mol-1, T = 100(2) K, orthorhombic, space group P212121,
3
˚
˚
a = 8.516(2), b = 11.588(3), c = 17.098(5) A, V = 1687.2(8) A ,
Z = 4, rcalc. = 1.080 Mg m-3, m = 0.129 mm-1, F(000) = 600, 86 541
reflections measured, 15 218 independent (R(int) = 0.0253), R1 (all
data) = 0.0320, R2 (all data) = 0.0399, Flack parameter: 0.01(4).
10 (a) B. V. Mork, T. D. Tilley, A. J. Schultz and J. Cowan, J. Am. Chem.
Soc., 2004, 126, 10428–10440; (b) M. Ochiai, H. Hashimoto and H.
Tobita, Angew. Chem., 2007, 119, 8340–8342, (Angew. Chem., Int. Ed.,
2007, 46, 8192–8194); (c) T. Watanabe, H. Hashimoto and H. Tobita,
Angew. Chem., 2004, 116, 220–223, (Angew. Chem., Int. Ed., 2004, 43,
218–221).
11 Details of the charge density determination are available in the ESI for
this article and from the CCDC (778885).
12 N. Kocher, J. Henn, B. Gostevskii, D. Kost, I. Kalikhman, B. Engels
and D. Stalke, J. Am. Chem. Soc., 2004, 126, 5563–5568.
13 A. Volkov, P. Macchi, L. J. Farrugia, C. Gatti, P. R. Mallinson, T.
Richter and T. Koritsanszky, XD2006, 2006.
Conclusion
Conclusively, there seems to be only one consistent interpretation
of the electronic structure. 3 is the first silicon(II) monohydride,
containing a Si1.68+ central atom (Scheme 2b). It is stabilized
through a covalent shared interaction to a sp3-hybridized boron
atom of the Lewis acid BH3. The positively charged H–Si–BH3
moiety is coordinated by the lone-pairs of the benzamidinate
ligand. The orientation of the VSCCs associated with those lone-
pair densities seem to be first of all caused by hybridization
requirements and not by a directed shared interaction with
the silicon atom. Non-shared interactions allow a much more
flexible coordination response of the ligand at the silicon atom
since the bonding is not predominantly orbital-controlled. We
conclude that the interaction between the silicon atom and
the ligand is mainly of a closed shell non-covalent N-lone-
pair character, reinforced by a transannular Si1 ◊ ◊ ◊ C1 privileged
exchange channel. The negative charge of the ligand is spread
over the C1N2-backbone by a merge of two extreme electronic
situations: either in a p-system formed by p-orbitals perpendicular
to the sp2-hybridized atoms C1, N1, and N2, or lone-pair density
coupling back into the C1N2-unit of the two negatively charged
sp3-hybridized nitrogen atoms. However, the density is distinctly
polarized, leading to a negative charge at the nitrogen atoms, which
counterbalances the positive silicon(II) hydride by an interaction
of the closed shell type.
14 R. F. W. Bader, Atoms in Molecules – A Quantum Theory, Oxford
University Press, New York, USA, 1990.
15 T. S. Koritsanszky and P. Coppens, Chem. Rev., 2001, 101, 1583–1627.
16 D. Leusser, J. Henn, N. Kocher, B. Engels and D. Stalke, J. Am. Chem.
Soc., 2004, 126, 1781–1793.
17 S. S. Sen, H. W. Roesky, D. Stern, J. Henn and D. Stalke, J. Am. Chem.
Soc., 2010, 132, 1123–1126.
18 R. F. W. Bader, J. Phys. Chem. A, 2009, 113, 10391–10396.
19 A. M. Penda´s, E. Francisco, M. A. Blanco and C. Gatti, Chem.–Eur. J.,
2007, 13, 9362–9371.
20 P. Roquette, A. Mwqaronna, A. Peters, E. Kaifer, H.-J. Himmel, C.
Hauf, V. Herz, E.-W. Scheidt and W. Scherer, Chem.–Eur. J., 2010, 16,
1336–1350.
21 S. Deuerlein, D. Leusser, U. Flierler, H. Ott and D. Stalke,
Organometallics, 2008, 27, 2306–2315.
22 H. Ott, U. Pieper, D. Leusser, U. Flierler, J. Henn and D. Stalke, Angew.
Chem., 2009, 121, 3022–3026, (Angew. Chem., Int. Ed., 2009, 48, 2978–
2982).
23 N. Kocher, D. Leusser, A. Murso and D. Stalke, Chem.–Eur. J., 2004,
10, 3622–3631.
24 (a) T. Kottke and D. Stalke, J. Appl. Crystallogr., 1993, 26, 615–619;
(b) T. Kottke, R. J. Lagow and D. Stalke, J. Appl. Crystallogr., 1996, 29,
465–468; (c) D. Stalke, Chem. Soc. Rev., 1998, 27, 171–178.
25 G. M. Sheldrick, SADABS 2006/3, Go¨ttingen, Germany, 2006.
26 G. M. Sheldrick, SHELXS in SHELXTL v6.10, Madison, USA, 2001.
27 G. M. Sheldrick, SHELXL in SHELXTL v6.10, Madison, USA, 2001.
28 F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci., 1986, 42, 515–522.
29 P. Rademacher, Strukturen organischer Moleku¨le, VCH, Wein-
heim/New York, 1987.
Acknowledgements
We are grateful to the Deutsche Forschungsgemeinschaft, in
particular to the DFG Priority Program 1178 Experimental charge
density as the key to understand chemical interactions and the
DNRF funded Center of Materials Crystallography, Aarhus.
30 N. K. Hansen and P. Coppens, Acta Crystallogr., Sect. A: Cryst. Phys.,
Diffr., Theor. Gen. Crystallogr., 1978, 34, 909–921.
31 A. Volkov, P. Macchi, L. J. Farrugia, C. Gatti, P. R. Mallinson, T.
Richter and T. Koritsanszky, XD2006, A Computer Program Package
for Multipole Refinement, Topological Analysis of Charge Densities
and Evaluation of Intermolecular Energies from Experimental or
Theoretical Structure Factors, 2006.
References
32 (a) Z. Su and P. Coppens, Acta Crystallogr., Sect. A: Found. Crystallogr.,
1998, 54, 646–652; (b) P. Macchi and P. Coppens, Acta Crystallogr.,
Sect. A: Found. Crystallogr., 2001, 57, 656–662.
33 (a) E. Clementi and D. L. Raimondi, J. Chem. Phys., 1963, 38, 2686–
2689; (b) E. Clementi and C. Roetti, At. Data Nucl. Data Tables, 1974,
14, 177–478.
1 W. P. Neumann, Synthesis, 1987, 665–683.
2 J. G. Ekerdt, Y.-M. Sun, A. Szabo, G. J. Szulczewski and J. M. White,
Chem. Rev., 1996, 96, 1499–1517.
3 C. Yamada, H. Kanamori, E. Hirota, N. Nishiwaki, N. Itabashi,
K. Kato and T. Goto, J. Chem. Phys., 1989, 91, 4582–
4586.
34 A. Volkov, Y. A. Abramov and P. Coppens, Acta Crystallogr., Sect. A:
Found. Crystallogr., 2001, 57, 272–282.
35 F. L. Hirshfeld, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor.
Gen. Crystallogr., 1976, 32, 239–244.
4 G. Trinquier, J. Am. Chem. Soc., 1990, 112, 2130–2137.
5 (a) P. V. Bharatam, R. Moudgil and D. Kaur, Organometallics, 2002,
21, 3683–3690; (b) P. V. Bharatam, R. Moudgil and D. Kaur, Inorg.
Chem., 2003, 42, 4743–4749.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 5458–5463 | 5463
©