(SAF2006-08764-C02-01; SAF2009-07271), Comunidad de
Madrid (S/SAL-0275-2006) for support, and M. C. Nicasio
for a gift of [(IPr)Ni(allyl)Cl]. ES thanks CSIC for grant
200880I221 and MICINN for grant CTQ2009-10478.
Notes and references
1 N. Chernyak and V. Gevorgyan, Angew. Chem., Int. Ed., 2010, 49,
2743–2746.
2 O. R. Thiel, M. M. Achmatowicz, A. Reichelt and R. D. Larsen,
Angew. Chem., Int. Ed., 2010, 49, 8395–8398.
3 (a) H. H. Hodgson, Chem. Rev., 1947, 40, 251–277;
(b) E. B. Merkushev, Synthesis, 1988, 923–937.
4 D. B. da Silva, A. Samadi, M. Chioua, M. C. Carreiras and
J. Marco-Contelles, Synthesis, 2010, 2725–2730.
5 M. P. Doyle, B. Siegfried and J. F. Dellaria, J. Org. Chem., 1977,
42, 2426–2431.
Scheme 4 A tentative free radical based mechanism for the formation
of bicyclo pyridone 3a from 2-amino-4-phenyl-6-(prop-2-yn-1-ylamino)-
pyridine-3,5-dicarbonitrile (2a).
6 (a) J. R. Piper, G. S. McCaleb, J. A. Montgomery, R. L. Kisliuk,
Y. Gaumont and F. M. Sirotnak, J. Med. Chem., 1986, 29,
1080–1087; (b) T. J. Murray, S. C. Zimmerman and
S. V. Kolotuchin, Tetrahedron, 1995, 51, 635–648;
(c) C. Peinador, V. Ojea and J. M. Quintela, J. Heterocycl. Chem.,
1992, 29, 1693–1702.
In Scheme 4 we show a tentative reaction mechanism for SR
heterocyclization of 2-amino-6-(prop-2-yn-1-ylamino)pyridines,
exemplified for intermediate 2a, but extensive to other related
intermediates. As proposed for the SR mechanism,5,19 the
formation of nitrosyl complexes of anhydrous copper halides,
strongly coordinated to the alkyne moiety, should be the
first step.
7 CCDC 785405w.
8 (a) H. Yu, W. Jin, C. Sun, J. Chen, W. Du, S. He and Z. Yu,
Angew. Chem., Int. Ed., 2010, 49, 5792–5797; (b) D. Cheng,
L. Croft, M. Abdi, A. Lightfoot and T. Gallagher, Org. Lett.,
2007, 9, 5175–5178.
9 (a) F. Couty and G. Evano, in Comprehensive Heterocyclic
Chemistry III, ed. A. R. Katritzky, C. A. Rams den, E. F. V. Scriven
and R. J. K. Taylor, Elsevier, Oxford, 2008, vol. 11, pp. 409–499;
(b) C. Hulme and Y.-S. Lee, Mol. Diversity, 2008, 12, 1–15.
10 T. Okubo, R. Yoshikawa, S. Chaki, S. Okuyamac and
A. Nakazato, Bioorg. Med. Chem., 2004, 12, 423–438.
11 For alkyne tethering intramolecular nucleophile promoted cyclo-
Then, the weak RO–NO bond of the nitrite should be
broken, leading to an alkoxy radical that would trap a
hydrogen, breaking the weak H–NH(C2) bond, starting then
the free radical chain reaction by a 5-exo-dig free radical
heterocyclization of the nitrogen centered radical at N(1) into
the activated alkyne. Next, and possibly due to the steric
hindrance, the resulting vinyl radical stereospecifically would
afford the chlorinated E-exo-chloromethylene intermediate.
Final hydrolysis of the HNQ(C2)N moiety would afford the
bicyclic pyridone 3a.20 The formation of imidazo[1,2-a]-
pyridines 3j and 3k could be explained assuming that the
presumed (E)-exo-halomethylene intermediate is too unstable,
and decomposes in situ in the presence of traces of an external
water source to the corresponding aldehyde, that evolves to
aldehyde 3j by oxidation, and to nitrile 3k, by reaction with
hydroxylamine, or nitrous acid, followed by dehydration.
In conclusion, we have discovered that SR, in the presence
of organic nitrites and copper halides, of N-(prop-2-yn-1-yl-
amino)pyridines synthesized by reacting easily available or
commercial 2-halopyridines and N-propargylamines is a mild,
new and practical method for the stereospecific synthesis of
highly substituted (E)-exo-halomethylene bicyclic pyridones
bearing the imidazo[1,2-a]pyridine heterocyclic ring system of
potential biological interest. These are suitable intermediates
for further synthetic transformations and modulation. In the
course of this prospective study we have also found that
2-amino-6-(prop-2-yn-1-ylamino)pyridines afford exo/endo-
methylene bicyclopyridones in transition metal-catalyzed
[CuCl2, Pd(OAc)2, PtCl2], NIS, or HCl/H2O-mediated hetero-
cylization reactions in convenient chemical yields.
isomerizations
leading
to
imidazo[1,2-a]pyridines,
see:
(a) M. Bakherad, H. Nasr-Isfahani, A. Keivanloo and
N. Doostmohammadi, Tetrahedron Lett., 2008, 49, 3819–3822;
(b) P. Liu, L.-S. Fang, X. Lei and G.-g. Lin, Tetrahedron Lett., 2010,
51, 4605–4608; (c) J. Reisch and M. Scheer, J. Heterocycl. Chem., 1988,
25, 677–679. For the usual one-pot synthesis of imidazo[1,2-a]pyridines
by reaction of 2-aminopyridines and a-bromoketones, see:
(d) R. R. Singhaus, R. C. Bernotas, R. Steffan, E. Matelan,
P. Quinet, I. Nambi, C. Feingold, A. Huselton, A. Wilhelmsson,
J. Goos-Nilsson and E. Wrobel, Bioorg. Med. Chem. Lett., 2010, 20,
521–525; (e) M. Adib, A. Mohamadi, E. Sheikhi, S. Ansari and
H. R. Bijanzadeh, Synlett, 2010, 1606–1608.
´
12 A. Samadi, J. Marco-Contelles, E. Soriano, M. Alvarez-Pe
´
rez,
a,
a and
os, Bioorg. Med. Chem., 2010, 18, 5861–5872, and
M. Chioua, A. Romero, L. Gonza
J. M. Roda, M. G. Lopez, M. Villarroya, A. G. Garcı
C. de los Rı
lez-Lafuente, L. Gandı
´ ´
´
´
´
references cited therein.
13 (a) S. Wagaw, B. H. Yang and S. L. Buchwald, J. Am. Chem. Soc.,
1998, 120, 6621–6622; (b) M. J. Iglesias, A. Prieto and
M. C. Nicasio, Adv. Synth. Catal., 2010, 352, 1949–1954.
´ ´
14 F. Rodrıguez and F. J. Fananas, in Handbook of Cyclization
Reactions, ed. S. Ma, Wiley-VCH, Weinheim, Germany, 2010,
vol. 2, pp. 951–990.
15 D. M. Krein and T. L. Lowary, J. Org. Chem., 2002, 67,
4965–4967.
16 (a) L. Almirante, A. Mugnaini, N. De Toma, A. Gamba and
W. Murmann, J. Med. Chem., 1970, 13, 1048–1051;
(b) L. Almirante, A. Mugnaini, P. Rugarli, A. Gamba, E. Zefelippo,
N. De Toma and W. Murmann, J. Med. Chem., 1969, 12, 122–126.
17 I. Kim, S. G. Kim, J. Y. Kim and G. H. Lee, Tetrahedron Lett.,
2007, 48, 8976–8981.
18 P. George and C. Giron, EP0172096 A1, 1986.
19 (a) W. A. Waters, J. Chem. Soc., Abstr., 1942, 266; (b) J. K. Kochi,
J. Am. Chem. Soc., 1957, 79, 2942–2948.
20 We cannot rule out the formation of 1-iodoalkyne intermediates as an
alternative mechanism, as recently reported by Fokin and co-workers
(L. B. Krasnova, J. E. Hein and V. V. Fokin, J. Org. Chem., 2010, 75,
8662–8665) in the synthesis of 7-aza-5-deazapurine analogues via
copper(I)-catalyzed hydroamination of alkynes and 1-iodoalkynes.
AS thanks CSIC for a ‘‘JAE-Doc’’ contract. DS thanks
FCT (MCTES) (Portugal) for
a grant (PTDC/SAU-
NEU/64151/2006). MC thanks ISCIII (MCINN, Spain) for
a ‘‘Sara Borrell’’ contract. JMC thanks also MICINN
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 5043–5045 5045