S. Gemma et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2776–2779
2779
inhibitors of NS3h. This work could lead to a novel class of prom-
ising anti-HCV agents, typified by 3a, potentially useful in the fight
against this viral infection, although further biological assays to
characterize these selective inhibitors are necessary.
Acknowledgment
S.Z. is the recipient of a Fondazione Buzzati–Traverso Fellow-
ship. Authors thank NatSynDrugs for financial support.
References and notes
1
2
.
.
Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M.
Science 1989, 244, 359.
Ascione, A.; Tartaglione, T.; Di Costanzo, G. G. Dig. Liver Dis. 2007, 39,
S4.
Figure 3. Variation of the apparent inhibitory constants (Kiapp) of 1 (QU663) and 3a
as a function of the NA concentrations. Data were fitted to the linear relationship:
3. Jain, M. K.; Zoellner, C. Expert. Opin. Pharmacother. 2010, 11, 673.
4. Webster, D. P.; Klenerman, P.; Collier, J.; Jeffery, K. J. Lancet Infect. Dis. 2009, 9,
NA
K
iapp ¼ K
i
þ ðK
i
=Km Þ ꢁ ½NAꢃ. Values are the means of three independent experi-
ments. Error bars are ±SD.
108.
5
6
.
.
Opar, A. Nat. Rev. Drug Discov. 2010, 9, 501.
Kolykhalov, A. A.; Mihalik, K.; Feinstone, S. M.; Rice, C. M. J. Virol. 2000, 74,
2
046.
strand (ss) (compare lanes 1–4 with lanes 6, 7). When the same
experiment was repeated in the presence of increasing amounts
of the NA substrate (Fig. 2B and C), the NS3h inhibitory effect of
increasing amount of 3a was reduced as the NA substrate concen-
tration increased (compare panel B, lanes 1–4 with panel C, lanes
7
8
.
.
Borowski, P.; Schalinski, S.; Schmitz, H. Antiviral Res. 2002, 55, 397.
Tai, C. L.; Chi, W. K.; Chen, D. S.; Hwang, L. H. J. Virol. 1996, 70, 8477.
9. Gwack, Y.; Kim, D. W.; Han, J. H.; Choe, J. Eur. J. Biochem. 1997, 250, 47.
0. Sampath, A.; Padmanabhan, R. Antiviral Res. 2009, 81, 6.
1. Gordon, C. P.; Keller, P. A. J. Med. Chem. 2005, 48, 1.
2. Chen, C. S.; Chiou, C. T.; Chen, G. S.; Chen, S. C.; Hu, C. Y.; Chi, W. K.; Chu, Y. D.;
Hwang, L. H.; Chen, P. J.; Chen, D. S.; Liaw, S. H.; Chern, J. W. J. Med. Chem. 2009,
1
1
1
1
–4). The dose–response curves shown in panel D clearly show
5
2, 2716.
that the potency of inhibition was inversely correlated to the con-
centration of the NA substrate, indicating a fully competitive
1
3. Borowski, P.; Deinert, J.; Schalinski, S.; Bretner, M.; Ginalski, K.; Kulikowski, T.;
Shugar, D. Eur. J. Biochem. 2003, 270, 1645.
14. Krawczyk, M.; Wasowska-Lukawska, M.; Oszczapowicz, I.; Boguszewska-
Chachulska, A. M. Biol. Chem. 2009, 390, 351.
5. Diana, G. D.; Bailey, T. R. U.S. 5633,388, 1997.
6. Janetka, J. W. L.; Mullican, M. D. WO 00/24725, 2000.
17. Phoon, C. W.; Ng, P. Y.; Ting, A. E.; Yeo, S. L.; Sim, M. M. Bioorg. Med. Chem. Lett.
2001, 11, 1647.
mechanism of action of 3a. The inhibition constant (K
i
) for 3a to
the NS3h was 0.02 ± 0.002 M. As shown in Figure 3, the apparent
l
1
1
inhibitory constant (Kiapp) values for both 3a and 1 increased as the
NA substrate concentration increased, clearly showing an identical
competitive mechanism of action. As expected, compound 3a was
1
8. Kandil, S.; Biondaro, S.; Vlachakis, D.; Cummins, A. C.; Coluccia, A.; Berry, C.;
much more potent than compound 1, as indicated by the different
Leyssen, P.; Neyts, J.; Brancale, A. Bioorg. Med. Chem. Lett. 2009, 19, 2935.
NA
slopes ðꢂ K =Km Þ of the curves. Similarly to 1, compound 3a did
i
19.
(a) Maga, G.; Gemma, S.; Fattorusso, C.; Locatelli, G. A.; Butini, S.; Persico, M.;
Kukreja, G.; Romano, M. P.; Chiasserini, L.; Savini, L.; Novellino, E.; Nacci, V.;
Spadari, S.; Campiani, G. Biochemistry 2005, 44, 9637; (b) Campiani, G.; Aiello,
F.; Fabbrini, M.; Morelli, E.; Ramunno, A.; Armaroli, S.; Nacci, V.; Garofalo, A.;
Greco, G.; Novellino, E.; Maga, G.; Spadari, S.; Bergamini, A.; Ventura, L.;
Bongiovanni, B.; Capozzi, M.; Bolacchi, F.; Marini, S.; Coletta, M.; Guiso, G.;
Caccia, G. J. Med. Chem. 2001, 44, 305.
not show inhibition towards the ATPase activity of NS3 up to
00 M, nor revealed any significant NA intercalating ability (data
not shown).
In conclusion, exploiting our previous goal in the field and our
1
l
understanding of the key structural and electron distribution fea-
tures necessary to reproduce in a small organic molecule the elec-
2
0. (a) Gemma, S.; Kukreja, G.; Tripaldi, P.; Altarelli, M.; Bernetti, M.; Franceschini,
S.; Savini, L.; Campiani, G.; Fattorusso, C.; Butini, S. Tetrahedron Lett. 2008, 49,
2074; (b) Campiani, G.; Fattorusso, C.; Butini, S.; Gaeta, A.; Agnusdei, M.;
Gemma, S.; Persico, M.; Catalanotti, B.; Savini, L.; Nacci, V.; Novellino, E.;
Holloway, H. W.; Greig, N. H.; Belinskaya, T.; Fedorko, J. M.; Saxena, A. J. Med.
Chem. 2005, 48, 1919.
1
9
tron distribution of purine and pyrimidine nucleotides,
we
discovered 3a as the most potent NS3h competitive inhibitor re-
ported to date. As its simplified analog 1, 3a represents the proto-
typic compound of the class of nucleotide-mimicking competitive