O. Serrano et al. / Journal of Organometallic Chemistry 696 (2011) 2217e2219
2219
Acknowledgment
The support of this work by the National Science Foundation is
gratefully acknowledged. O.S. thanks the CONACYT (México) for
a postdoctoral fellowship. E.H. thanks the German Research Foun-
dation (DFG) for financial support.
Appendix A. Supplementary information
CCDC-791693 and 791694 contain the crystallographic data for 1
and 2. These data are available free of charge from the Cambridge
References
[1] (a) T.J. Kealy, P.L. Pauson, Nature 168 (1951) 1039;
(b) G. Wilkinson, M. Rosenblum, M.C. Whiting, R.B. Woodward, J. Am. Chem.
Soc. 74 (1952) 2125;
(c) E.O. Fischer, W.Z. Pfab, Naturforsch. B. 7 (1952) 377;
(d) S.A. Miller, J.A. Tebboth, J.F. Tremaine, J. Chem. Soc. (1952) 632;
(e) E.O. Fischer, W.Z. Hafner, Naturforsch 108 (1955) 665.
[2] (a) E. Weiss, E.O. Fischer, Z. Anorg. Allg. Chem. 286 (1956) 142;
(b) E.O. Fischer, Z. Hafner, Z. Anorg. Allg. Chem. 286 (1956) 146.
[3] (a) A. Haaland, Acc. Chem. Res. 12 (1979) 415;
Fig. 2. Thermal ellipsoid (30%) plot of of [Ni2(GaAr0)2(h1 h1
: -m2-C2H4)] (2). The iso-
propyl groups of the flanking aryl rings of the terphenyl substituent and hydrogen
atoms are not shown. Selected bonds lengths (Å) and angles (deg): Ni(1)eNi(2) 2.437
(5), C(61)eC(62) 1.57(4), Ni(1)eGa(1) 2.421(5), Ni(2)eGa(1) 2.422(5), Ni(1)eGa(2)
2.406(5), Ni(2)eGa(2) 2.411(4); Ga(1)eNi(1)eGa(2) 73.20(14), Ga(1)eNi(2)eGa(2)
73.09(14).
(b) F.G.A. Stone, Nature 232 (1971) 534.
[4] (a) E.O. Fischer, F. Röhrscheid, Z. Naturforsch. B. 17 (1962) 483;
(b) K. Béchamp, M. Levesque, H. Joly, L. Manceron, J. Phys. Chem. A 110 (2006) 6023.
[5] (a) J.-H. Shin, G. Parkin, Chem. Commun. (1999) 887;
(b) M. Wagner, Angew. Chem. Int. Ed. 45 (2006) 5916.
[6] (a) A.M. Madonick, D. Astruc, J. Am. Chem. Soc. 106 (1984) 2437;
(b) M.A. Paz-Sandoval, I.I. Rangel-Salas, Coord. Chem. Rev. 250 (2006) 1071;
(c) M. Rosillo, G. Dominguez, J. Perez-Castells, Chem. Soc. Rev. 36 (2007) 1589.
[7] (a) M.R. Thompson, C.S. Day, V.W. Day, R.I. Mink, E.L. Muetterties, J. Am. Chem.
Soc. 102 (1980) 2979;
(b) B.F.G. Johnson, C.M. Martin, P. Schooler, Chem. Commun. (1998) 1239.
[8] (a) M.R. Haneline, F.P. Gabbaï, Angew. Chem. Int. Ed. 43 (2004) 5471;
(b) H. Braunschweig, M. Kaupp, C.J. Adams, T. Kupfer, K. Radacki, S. Schinzel,
J. Am. Chem. Soc. 130 (2008) 11376;
molecule of ethylene is fixed by the two GaAr0 entities to give
a Ni2Ga2C2 bicyclic core structure. The ethylene bridges the two Ga
atoms, whichform an edgeof a Ga2Ni2 tetrahedron. The C(61)eC(62)
(1.568 Å) bond distance is consistent with a single bond [19]. The
Ga$$$Ga0 distance of2.877Å suggeststhatthe twogallium atoms in 2
are not bonded although a weak interaction is not precluded [20].
The nickel atoms are each
h
6-arene bound by a flanking ring of the
-bonded to a gallium atom. The
Ar’ ligand. The Ar0 groups are also
s
NieNi bond length (2.44 Å) is consistent with the existence of
a single bond [21]. The four GaeNi distances are 2.415, 2.421, 2.409
and 2.424 Å, which are also consistent with single bonding [3,16,22].
(c) M. Tamm, Chem. Commun. (2008) 3089.
[9] I. Resa, E. Carmona, E. Gutierrez-Puebla, A. Monge, Science 305 (2004) 1136.
[10] T. Murahashi, M. Fujimoto, M. Oka, Y. Hashimoto, T. Uemura, Y. Tatsumi,
Y. Nakao, A. Ikeda, S. Sakaki, H. Kurosawa, Science 313 (2006) 1104.
[11] V. Lavallo, R.H. Grubbs, Science 326 (2009) 559.
[12] T. Kurikawa, H. Takeda, M. Hirano, K. Judai, T. Arita, S. Nagao, A. Nakajima,
K. Kaya, Organometallics 18 (1999) 1430.
[13] SADABS,Area-detectionAbsorptionCorrection.BrukerAXSInc.,Madison,WI,1996.
[14] SHELXS and SHELXL PC: Version 5.03. Bruker AXS Inc., Madison, WI, 1994.
[15] S.P. Green, C. Jones, A. Stasch, Inorg. Chem. 46 (2007) 11.
[16] (a) A. Kempter, C. Gemel, T. Cadenbach, R.A. Fischer, Organometallics 26
(2007) 4257;
The GaeC s-bonds are 1.907 and 2.024 Å. The GaeC distances to the
flanking are in the expected range. The Niep6earene bond lengths
span the range from 2.115 to 2.258 Å, indicating the ring is coordi-
nated nearly symmetrically [23].
1H and 13C NMR spectroscopy of solution of 2 are consistent
with the X-ray crystal structure. The two hydrogens of each
methylene carbon unit are inequivalent in benzene-D6 solution
at room temperature because of these different magnetic
(b) P. Jutzi, B. Neumann, G. Reumann, H.-G. Stammler, Organometallics 18
(1999) 2037;
(c) P. Jutzi, B. Neumann, G. Reumann, H.-G. Stammler, Organometallics 17
(1998) 1305;
environments. In the 1H NMR spectrum the compound
2
exhibits two doublet resonances at
d 6.31and 5.33 and a virtual
triplet, as a result of overlap of two doublet signals, at 6.19 ppm
which was assigned to the four “ethylene” protons. The down-
field shifts of these protons are noteworthy and may be a result
of the proximity of the flanking aryl rings of the terphenyl
ligand. There are four sets of protons signals from the iso-propyl
groups which are in the range of 2.4e3.2 ppm. In the 13C{1H}
NMR spectrum, one resonance at 13.9 ppm may be assigned to
the ethylene group.
All currently known monomeric homoleptic gallanediyl
complexes such as M(GaR)n (M ¼ Fe, Ni, Pd, Pt; R ¼ Cp*, C(SiMe3)3,
etc) do not react with donor molecules such as CO and PR3 [22].
However, the dinuclear cluster complexes M2(GaCp*)5 (M ¼ Pd, Pt)
react with a selection of small molecules (CO, phosphanes, iso-
cyanides) to give substitution products, however, to the best of our
knowledge this is the first example of a reaction of an olefin with an
M(GaR)n(L)m species [24].
(d) P. Jutzi, B. Neumann, L.O. Schebaum, A. Stammler, H.-G. Stammler,
Organometallics 18 (1999) 4462;
(e) W. Uhl, S. Melle, G. Frenking, M. Hartmann, Inorg. Chem. 40 (2001) 750;
(f) O. Serrano, E. Hoppe, P.P. Power, J. Clust. Sci. 21 (2010) 449.
[17] (a) N.J. Hardman, R.J. Wright, A.D. Phillips, P.P. Power, J. Am. Chem. Soc. 125
(2003) 2667;
(b) Z. Zhu, X. Wang, M.M. Olmstead, P.P. Power, Angew. Chem. Int. Ed. 48
(2009) 2027;
(c) Z. Zhu, X. Wang, Y. Peng, H. Lei, J.C. Fettinger, E. Rivard, P.P. Power, Angew.
Chem. Int. Ed. 48 (2009) 2031;
(d) Z. Zhu, J.D. Guo, R.C. Fischer, B.D. Ellis, E. Rivard, W.A. Merrill,
M.M. Olmstead, L. Pu, S. Nagase, P.P. Power, Chem. Eur. J. 15 (2009) 5263.
[18] W. Uhl, M. Benter, S. Melle, W. Saak, G. Frenking, J. Uddin, Organometallics 18
(1999) 3778.
[19] Structural parameters for C2H4 in gas phase: CeC 1.330 Å, CeH, 1.076 Å,
CeCeH 121.7ꢀ, HeCeH 116.6ꢀ, in: K.P.C. Vollhardt, N.E. Schore (Eds.), Organic
Chemistry, third ed. W. H. Freeman and Company, New York, 1998, p. 438.
[20] T. Steinke, C. Gemel, M. Cokoja, M. Winter, R.A. Fischer, Dalton Trans. (2005) 55.
[21] U. Denninger, J.J. Schneider, G. Wilke, R. Goddard, D. Krüger, Inorg. Chem. Acta
213 (1993) 129.
[22] P.Jutzi,B.Neumann,G.Reumann,H.eG. Stammler, Organometallics 17 (1998) 2037.
[23] (a) J. Cámpora, M.M. Conejo, M.L. Reyes, K. Mereiter, E. Passaglia, Chem.
Commun. (2003) 78;
(b) A.R. O’Connor, S.A. Urbin, R.A. Moorhouse, P.S. White, M. Brookhart,
Organometallics 28 (2009) 2372.
[24] C. Gemel, T. Steinke, M. Cokoja, A. Kempter, R.A. Fischer, Eur. J. Inorg. Chem.
(2004) 4161.
In summary, we have shown that a low-valent compound Ni(0)-
Ga(I), Ni(COD)(GaAr0)2 (1), readily undergoes addition of one
molecule of ethylene at room temperature and 1 atm pressure to
give (arene)nickelenickel(arene) [Ni2(GaAr0)2(h1 h1
: -m2-C2H4)] (2)
complex.