P. Zhao et al. / Spectrochimica Acta Part A 79 (2011) 219–225
225
3.6. Fluorescence spectra
[5] A.R. Katritzky, R.M. Witek, V. Rodriguez-Garcia, P.P. Mohapatra, J.W. Rogers, J.
Cusido, A.A.A. Abdel-Fattah, P.J. Steel, J. Org. Chem. 70 (2005) 7866–7881.
[6] Y.H. Kang, C.J. Lee, K. Kim, J. Org. Chem. 66 (2001) 2149–2153.
[7] A.R. Katritzky, D.N. Haase, J.V. Johnson, A. Chung, J. Org. Chem. 74 (2009)
2028–2032.
[8] C. Richardson, P.J. Steel, Dalton Trans. (2003) 992–1000.
[9] X.L. Zhou, X.R. Meng, W. Cheng, H.W. Hou, M.S. Tang, Y.T. Fan, Inorg. Chim. Acta
360 (2007) 3467–3474.
Experimental solid-state fluorescence spectra of BOTN are
shown in Fig. 5. The emission bands are observed at 423 and 489 nm,
respectively, which lie in the blue region, indicating that BOTN is a
potential fluorescent material.
[10] D.S. Moore, S.D. Robinson, Adv. Inorg. Chem. 32 (1988) 171–239, and references
therein.
[11] M. Murrie, D. Collison, C.D. Garner, M. Helliwell, P.A. Tasker, S.S. Turner, Poly-
hedron 17 (1998) 3031–3043.
4. Conclusions
3-(1H-Benzo[d][1,2,3]triazol-1-yl)-1-oxo-1-m-tolylpropan-2-
yl-nicotinate (BOTN) has been synthesized by four-step reactions
and characterized by IR and UV–vis spectra. The crystal structure
determinations show that the compound crystallizes in mono-
clinic, space group P2(1)/c. B3LYP/6-311G** method can simulate
the crystal structure and vibrational spectra of BOTN on the whole.
Based on the calculational vibration frequencies, the thermody-
namic properties of BOTN have been obtained. The TD-DFT method
at B3LYP/6-311G** level can be used to predict the electronic spec-
tra approximately. The solid-fluorescence spectra determinations
suggest that BOTN is a potential fluorescent material.
[12] D.A. Pillard, J.S. Cornell, D.L. Dufresne, M.T. Hernandez, Water Res. 35 (2001)
557–560.
[13] K.F. Khaled, Electrochim. Acta 54 (2009) 4345–4352.
[14] M.C. Hu, Y. Wang, Q.G. Zhai, S.N. Li, Y.C. Jiang, Y. Zhang, Inorg. Chem. 48 (2009)
1449–1468.
[15] T.Z. Yu, Y.L. Zhao, X.S. Ding, D.W. Fang, L. Aian, W.K. Dong, J. Photochem. Pho-
tobiol. A 188 (2007) 245–251.
[16] W.L. Zeng, Acta Crystallogr. E63 (2007) o3219–o3220.
[17] G.M. Sheldrick, SHELXTL, v5 Reference Manual, Siemens Analytical X-Ray Sys-
tems, Madison, WI, 1997.
[18] A.J. Wilson, International Table for X-ray Crystallography, Kluwer Academic,
Dordrecht, The Netherlands, 1992, Vol. C: Tables 6.1.1.4 (pp. 500–502) and
4.2.6.8 (pp. 219–222).
[19] M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J. Am. Chem. Soc. 107 (1985) 3902–3909.
[20] C. Peng, P.Y. Ayala, H.B. Schlegel, M.J. Frisch, J. Comput. Chem. 17 (1996) 49–56.
[21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, Vreven, Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J.
Tomasi,V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,
J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J.
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.
Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman,
J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham,
C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson,W. Chen,
M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian Inc., Wallingford, CT, 2004.
[22] E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52 (1984) 997–1000.
[23] M. Petersilka, U.J. Gossmann, E.K.U. Gross, Phys. Rev. Lett. 76 (1966) 1212–1215.
[24] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256 (1996) 454–464.
[25] T. Steiner, Cryst. Rev. 6 (1996) 1–5.
[26] G.A. Jeffrey, H. Maluszynska, J. Mitra, Int. J. Biol. Macromol. 7 (1985) 336–348.
[27] J.A. Pople, H.B. Schlegel, R. Krishnan, D.J. Defrees, J.S. Binkley, M.J. Frisch,.R.A.
Whiteside, R.F. Hout, W.J. Hehre, Int. J. Quantum Chem. Quantum Chem. Symp.
15 (1981) 269–278.
[28] A. Frish, A.B. Nielsen, A.J. Holder, Gaussview Users Manual, Gaussian Inc., Pitts-
burg, 2000.
Ottawa, Ottawa, Canada, 2009.
[30] S.I. Gorelsky, A.B.P. Lever, J. Organomet. Chem. 635 (2001) 187–196.
Acknowledgements
This work was supported by Jiangsu Key Laboratory for Chem-
istry of Low-Dimensional Materials, PR China (JSKC10078) and
Huaian Science & Technology Bureau, Jiangsu Province, PR China
(HAG2010027).
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] K.Z. Katarzyna, N. Andzelika, Z. Justyna, C. Lidia, P. Janusz, M. Przemys ław, B.
Maria, Bioorg. Med. Chem. 12 (2004) 2617–2624.
[2] M.D. Kamal, A.G. Hassan, E. Mohey, A.M. Hanan, H. Bahira, Bioorg. Med. Chem.
14 (2006) 3672–3680.
[3] C.Y. Wu, K.Y. King, C.J. Kuo, J.M. Fang, Y.T. Wu, M.Y. Ho, C.L. Liao, J.J. Shie, P.H.
Liang, C.H. Wong, Chem. Biol. 13 (2006) 261–268.
[4] S.S. Zhang, H.Q. Zhang, D. Li, L.H. Sun, C.P. Ma, W. Wang, J. Wan, B. Qu, Eur. J.
Pharmacol. 584 (2008) 144–152.