Thedevelopmentsinthisfield wereexcellentlycovered by a
recent review by Gulder and Moore.19
Scheme 1. Biosynthesis of Salinosporamide A According to
Moore20
Figure 1. Natural products showing proteasome inhibition
activity.
produces a wide range of closely related secondary meta-
bolites.12 In contrast, the cinnabaramides were found in
the terrestrial strain Streptomyces JS 360.13 Typical repre-
sentatives such as salinosporamide A and cinnabaramide
A inhibit the 20S proteasome in the low nanomolar
range13,14 and are therefore interesting candidates for
antitumor therapies. Salinosporamide is currently in phase
I clinical studies for the treatment of multiple myeloma.15
Therefore, it comes to no surprise that several total
syntheses16 and formal syntheses,17 especially toward sal-
inosporamide A, have been developed during the past few
years.18 The unusual β-cyclohexenylserine as a central
building block was either generated via nucleophilic attack
of cyclohexenyl organometallics or of cyclohexanone en-
olates onto suitable protected serine-derived aldehydes.
The group of Moore also investigated the biosynthesis of
the salinosporamides (Scheme 1).20 In principle, the mole-
cule can be divided into two major building blocks. The
chlorinated activated β-keto thioester A is obtained from a
tetrose via chloroethylmalonyl-CoA, which is coupled with
acetyl-CoA using a polyketide synthase (PKS). The second
building block B, a β-cyclohexenylserine, is obtained via a
modified shikimate pathway. Both building blocks were
coupled on a nonribosomal peptide synthetase (NRPS)
giving C, which undergoes cyclizations toward salinospor-
amide A. In the original publication, a (2R)-configuration
was shown for the unusual amino acid B.20 Later on,
during investigations of the enzymes involved in this
biosynthesis, this configuration was assigned to be 2S.21
€
(13) Stadler, M.; Bitzer, J.; Mayer-Bartschmid, A.; Muller, H.;
Benet-Buchholz, J.; Gantner, F.; Tichy, H.-V.; Reinemer, P.; Bacon,
K. B. J. Nat. Prod. 2007, 70, 246–252.
(14) (a) Fenteany, G.; Standaert, R. F.; Lane, W. S.; Choi, S.; Corey,
E. J.; Schreiber, S. L. Science 1995, 268, 726–731. (b) Groll, M.; Ditzel,
€
L.; Lowe, J.; Stock, D.; Bochtler, M.; Bartunik, H. D.; Huber, R. Nature
1997, 386, 463–471.
Figure 2. Deuterated β-cyclohexenylserine derivatives.
(15) Chauhan, D.; Catley, L.; Li, G.; Podar, K.; Hideshima, T.;
Velankar, M.; Mitsiades, C.; Mitsiades, N.; Yasui, H.; Letai, A.; Ovao,
H.; Berkers, C.; Nicholson, B.; Chao, T.-H.; Neuteboom, S. T. C.;
Richardson, P.; Palladino, M. A.; Anderson, K. C. Cancer Cell 2005, 8,
407–419.
Our group has been involved in the synthesis of unusual
amino acids for several years,22 and for biosynthetic
studies we were interested in a stereoselective synthesis of
a dideuterated cyclohexenylserine derivative for feeding
experiments. We began our investigations shortly after the
proposal by Moore20 in 2007. Therefore, our targets were
the protected (2R,3S,4S)-configured amino acid 1 and the
deprotected activated derivative 2 (Figure 2).
(16) (a) Reddy, L. R.; Saravanan, P.; Corey, E. J. J. Am. Chem. Soc.
2004, 126, 6230–6231. (b) Endo, A.; Danishefsky, S. J. J. Am. Chem. Soc.
2005, 127, 8298–8299. (c) Mulholland, N. P.; Pattenden, G.; Walters,
I. A. S. Org. Biomol. Chem. 2006, 4, 2845–2846. (d) Ma, G.; Nguyen, H.;
Romo, D. Org. Lett. 2007, 9, 2143–2146. (e) Ling, T.; Macherla, V. R.;
Manam, R. R.; McArthur, K. A.; Potts, B. C. M. Org. Lett. 2007, 9,
2289–2292. (f) Mulholland, N. P.; Pattenden, G.; Walters, I. A. S. Org.
Biomol. Chem. 2008, 6, 2782–2789. (g) Takahashi, K.; Midori, M.;
Kawano, K.; Ishihara, J.; Hatakeyama, S. Angew. Chem. 2008, 120,
6340–6342. Angew. Chem., Int. Ed. 2008, 47, 6244–6246. (h) Fukuda, T.;
Sugiyama, K.; Arima, S.; Harigaya, Y.; Nagamitsu, T.; Omura, S. Org.
Lett. 2008, 10, 4239–4242. (i) Nguyen, H.; Ma, G.; Romo, D. Chem.
Commun. 2010, 46, 4803–4805.
(19) Gulder, T. A. M.; Moore, B. S. Angew. Chem. 2010, 122, 9534–
9556. Angew. Chem., Int. Ed. 2010, 49, 9346–9367.
(20) Beer, L. L.; Moore, B. S. Org. Lett. 2007, 9, 845–848.
(17) (a) Caubert, V.; Langlois, N. Tetrahedron Lett. 2006, 47, 4473–
4475. (b) Caubert, V.; Masse, J.; Retailleau, P.; Langlois, N. Tetrahedron
ꢀ
ꢀ
(21) McGlinchey, R. P.; Nett, M.; Eustaquio, A. S.; Asolkar, R. N.;
Lett. 2007, 48, 381–384. (c) Margalef, I. V.; Rupnicki, L.; Lam, H. W.
Tetrahedron Lett. 2008, 64, 7896–7901. (d) Mosey, R. A.; Tepe, J. J.
Tetrahedron Lett. 2009, 50, 295–297. (e) Momose, T.; Kaiya, Y.;
Hasegawa, J.-I.; Sato, T.; Chida, N. Synthesis 2009, 2983–2991.
(18) Shibasaki, M.; Kanai, M.; Fukuda, N. Chem. Asian J. 2007, 2,
20–38.
Fencial, W.; Moore, B. S. J. Am. Chem. Soc. 2008, 130, 7822–7823.
(22) (a) Kazmaier, U. Amino Acids 1996, 11, 283. (b) Deska, J.;
Kazmaier, U. Curr. Org. Chem. 2008, 12, 355–385. (c) Kazmaier, U. In
Frontiers in Asymmetric Synthesis and Application of R-Amino Acids;
Soloshonok, V. A., Izawa, K., Eds.; American Chemical Society: Washington,
DC, 2009; p 157 and references cited therein.
Org. Lett., Vol. 13, No. 12, 2011
3211