ORGANIC
LETTERS
2011
Vol. 13, No. 12
3266–3269
Oxime Derivatives as r-Electrophiles.
From r-Tetralone Oximes to Tetracyclic
Frameworks
ꢀ
Beatrice Quiclet-Sire,* Nina Tolle, Syeda Nahid Zafar, and Samir Z. Zard*
€
ꢁ
Laboratoire de Synthese Organique, CNRS UMR 7652 Ecole Polytechnique, 91128
Palaiseau Cedex, France
Received May 8, 2011
ABSTRACT
When subjected to the conditions of a SemmlerÀWolff/Schroeter aromatization, the oximes of 4-benzyl-substituted tetralones undergo an
electrophilic aromatic substitution reaction to form tetracyclic frameworks.
Various synthetic applications for oximes have been
reported since their first application to the identifica-
tion of ketones and aldehydes in the late 19th century.1
The Beckmann rearrangement of ketoximes is a classi-
cal textbook reaction, which has found widespread
utility.2 Oximes are known to react as O or N nucleo-
philes,3 and their use as CdN electrophiles has been
reported.4 Additionally, their CÀH acidity is often
sufficient for R-alkylation-reactions, and coordination
of transition metal atoms can lead to a β-CÀH activa-
tion through cyclopalladation reactions for example.5
A lesser known reaction is the aromatization under
acidic conditions of oximes derived from R,β-unsatu-
rated cyclohexanones, first described by Semmler and
Wolff and later extended to oximes of R-tetralones by
Schroeter and his collaborators.6
A few years ago, we devised a concise route to
R-tetralones7 based on the radical xanthate transfer
technology8 and applied it to the total synthesis of
a number of natural products such as norpar-
vulenone, O-methyl asparvenone, and shinanolone.9
We also found that R-tetralones 3, obtained by the
(6) (a) Semmler, W. Ber. Dtsch. Chem. Ges. 1892, 25, 3352. (b) Wolff,
L. Justus Liebigs Ann. Chem. 1902, 322, 351. (c) Schroeter, G.; Gluschke,
€
A.; Gotzky, S.; Huang, J.; Irmisch, G.; Laves, E.; Schrader, O.; Stier, G.
Ber. Dtsch. Chem. Ges. 1930, 63, 1308.
(7) Liard, A.; Quiclet-Sire, B.; Saicic, R. N.; Zard, S. Z. Tetrahedron
Lett. 1997, 38, 1759.
(8) For reviews of the xanthate transfer chemistry, see: (a) Zard, S. Z.
Angew. Chem., Int. Ed. 1997, 36, 672. (b) Zard, S. Z. In Radicals in
Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim,
2001; Vol. 1, p 90. (c) Quiclet-Sire, B.; Zard, S. Z. Chem.;Eur. J. 2006,
12, 6002. (d) Quiclet-Sire, B.; Zard, S. Z. Top. Curr. Chem. 2006, 264,
201. (e) Zard, S. Z. Aust. J. Chem. 2006, 59, 663. (f) Zard, S. Z. Org.
Biomol. Chem. 2007, 5, 205. (g) Quiclet-Sire, B.; Zard, S. Z. Pure Appl.
Chem. 2011, 83, 519.
(9) (a) Cordero Vargas, A.; Quiclet-Sire, B.; Zard, S. Z Org. Lett.
2003, 5, 3717. (b) Cordero Vargas, A.; Quiclet-Sire, B.; Zard, S. Z.
Tetrahedron Lett. 2004, 45, 7355. (c) Cordero-Vargas, A.; Quiclet-Sire,
B.; Zard, S. Z. Org. Biomol. Chem. 2005, 3, 4432. (d) Cordero-Vargas,
A.; Quiclet-Sire, B.; Zard, S. Z. Bioorg. Med. Chem. 2006, 14, 6165. (e)
Petit, L.; Zard, S. Z. Chem. Commun. 2010, 46, 5148.
(1) Beckmann, E. Ber. Dtsch. Chem. Ges. 1886, 19, 988.
(2) (a) Beckmann, E. Ber. Dtsch. Chem. Ges. 1888, 19, 988. For
reviews see:(b) Donaruma, L. G.; Held, W. Z. Org. React. 1960, 11, 1. (c)
Gawley, R. E. Org. React. 1988, 35, 14.
(3) Smith, P. A. S.; Robertson, J. E. J. Am. Chem. Soc. 1962, 84, 1197.
(4) (a) Yoshida, M.; Uchiyama, K.; Narasaka, K. Heterocycles 2000,
52, 681. (b) Hoch, J. Compt. Rend. 1934, 198, 1865. (c) Campbell, K. N.;
McKenna, J. F. J. Org. Chem. 1939, 4, 198. (d) Rodriques, K. E.; Basha,
A.; Summers, J. B.; Brooks, D. W. Tetrahedron Lett. 1988, 29, 3455.
(5) Dunina, V. V.; Zalevskaya, O. A.; Potapov, V. M. Russ. Chem.
Rev. 1988, 57, 250.
r
10.1021/ol2012204
Published on Web 05/26/2011
2011 American Chemical Society